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Abstract
This paper presents a method that allows urban planners and municipal engineers
to identify critical components of interdependent infrastructure systems. The in-
tent of the method is to provide a means of modeling the impact of capacity-related
changes (e.g., population growth, component degradation) on a city’s ability to
deliver resources to critical locations. Infrastructure systems are modeled as flow
networks in which capacities, demands, and supply constraints vary over time;
demand nodes also have criticality ratings that allow a user to model levels of
importance. Interconnections between infrastructure systems are represented by
physical and geospatial dependencies at a component level. A flow-based central-
ity measure is used to rank components according to their role in the delivery of
resources to critical locations. A simple instantiation of the method is presented
and evaluated on a district-scale model of a city that contains interconnected water
and electricity networks. Finally, two forms of reliability analysis are demon-
strated: a composite measure incorporating edge reliability, and a variation on
standard component failure/degradation analysis.

Keywords: Component importance measures, Centrality measures, Complex
systems, Network science, Infrastructure reliability

1. Introduction1

This paper presents a method for identifying critical components in interde-2

pendent, urban infrastructure systems, where a component is deemed critical to the3

extent that it is relied upon to deliver resources to critical locations (e.g,. hospitals).4

The goal of the work is to provide urban planners and municipal engineers with5

a means of visualizing the impact of capacity-related changes. This goal is met6

by combining a flow-based centrality measure with a network-based approach to7
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infrastructure systems that permits modelers to: (1) define physical and geospatial8

interdependencies; (2) represent temporal dynamics through the use of time series9

for key system variables, and; (3) label locations with criticality values in order10

to represent asset importance. While useful in its own right, this basic method11

may be combined with standard reliability methods in order to model the effects12

of component failure.13

The perspective in this work is resource-based. Residents of cities depend on14

infrastructure systems to deliver not only physical resources such as water and gas,15

but also a range of social goods ranging from education to healthcare. Disruptions16

in the delivery of resources and/or services can have extremely deleterious con-17

sequences, particularly for critical locations such as hospitals and transportation18

hubs. Methods for identifying infrastructure components that are relied upon to19

supply critical locations with resources can be used for a variety of purposes,20

including maintenance scheduling, disaster recovery, critical infrastructure pro-21

tection, and urban planning.22

In keeping with the focus on resource delivery, the method presented in this23

work represents infrastructure systems as flow networks–graphs that allow com-24

modities to flow from a set of supply nodes to a set of demand nodes. Edges of25

the network (i.e., pipes) are labeled with capacity values that limit their maximum26

flow. Demand nodes represent consumers of resources such as hospitals, laun-27

dromats, and homes. The modeler supplies the various system variables, such as28

capacities, supply constraints, and demands.29

Unlike typical flow networks, however, the demand nodes are labeled with30

criticality ratings that indicate the relative importance of the structure at that31

location. These criticality ratings, which are also defined by the modeler, are then32

used to calculate a centrality measure–the critical flow centrality (“CFC”). CFC33

values are propagated from the demand nodes through the rest of the infrastructure34

system’s components. The user can then visualize the system’s components (e.g.,35

with a heat map) according to their role in delivering resources to critical locations.36

Since urban infrastructure systems are interconnected in various ways, users37

may define physical and geospatial dependencies. Physical dependencies exist38

when components of system � require resources supplied by system �. Geospatial39

dependencies exist when components of � and � are co-located. The inclusion40

of dependencies allows the user to model the potential for cascading failure,41

simultaneous disruption due to weather events, and other common scenarios. In42

particular, criticality ratings are propagated across interdependent systems so that43

the user may immediately determine which components of System � play an44

important role in supplying the critical components of System � with resources.45
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Apart from dependency modeling and criticality ratings, the third distinguish-46

ing characteristic of this work is the use of time series. Key system variables (e.g.,47

capacity constraints, supply constraints, demand levels, and criticality ratings) are48

dynamic rather than static, allowing the user to model phenomena at a variety of49

time scales. For instance, a geographer may be interested in studying the impact50

of population growth on a particular district over decades, while an urban planner51

might use the same model with different data in order to visualize the short-term52

consequences of planning interventions.53

Finally, the CFC measure becomes even more interesting when combined with54

standard reliability methods. The CFC was designed to identify components that55

play a substantial role in delivering resources to critical locations. However, the56

failure of a component with a high CFC value will not necessarily result in a loss57

of service, as there may be alternative (fallback) routes available. Combining the58

CFC with reliability methods allows a modeler to reason explicitly about fallback59

routes and the consequences of component failure.60

The structure of this paper is as follows. Section 2 provides useful background61

information, while Section 3 introduces the methodology used in this paper, in-62

cluding the CFCmeasure. Section 4 provides an evaluation of the methodology on63

a district-scale model of a city. Section 5 discusses two forms of reliability analysis64

that can be combined with the CFC measure to model potential service loss due65

to component failure. The paper closes with suggestions for future research.66

2. Background67

The method in this paper can be viewed as a combination of techniques from68

network science and critical infrastructure protection. The fundamental build-69

ing block is a component importance measure (“CIM”) (e.g,. [1], [2], [3]) that70

estimates the degree to which a given component participates in the delivery of71

resources to critical locations. Before discussing the method in detail, a quick72

discussion of relevant background material is required.73

2.1. Network Science and Centrality Measures74

Networks are a common choice of modeling mechanism in many fields, and75

critical infrastructure protection is no exception (see [4]). For example, many ap-76

proaches to infrastructure vulnerability and resilience make use of techniques from77

network science. From the perspective of the current paper, the most important of78

these techniques are the centrality measures, which are used to identify the most79

central components in a network (see [5, 6, 7]).80
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Numerous centrality measures exist [8], the most intuitive of which are: (1)81

nearness measures, which determine a given component’s centrality by means82

of its proximity to other components, and; (2) betweenness measures, which83

deem components to be central to the extent to which they stand between other84

components as intermediaries. While nearness and betweenness measures focus85

on network topology, dynamical measures are based on processes (e.g., flows,86

diffusion) taking place on the network.87

The progenitor of the method used in this paper is flow centrality [9]. Consider88

a simple network with nodes + and links � . A node E is considered to be between89

other nodes D and F to the extent that the maximum flow between D and F depends90

on E. Nodes are deemed central to the extent that they facilitate maximum flow.91

Stated formally, for D, E, F ∈ + , let <D,F be the maximum flow between D and
F, and let<D,F (E) be the maximum flow between D and F that depends on E. Then
the flow centrality (“FC”) of a node E ∈ + is the degree to which the maximum
flow between all unordered pairs of nodes depends on E:

�� (E) =
∑
D≠F≠E

<D,F (E) (1)

2.2. Interdependent Infrastructures92

Infrastructure systems are typically coupled to the extent that the failure of93

components in one system can cause failures in connected systems [10]. These94

interdependent systems are typically more fragile than solitary systems [11], with95

additional failure modes (e.g., cascading failures [12]) that can be quite complex.96

For example, water distribution systems impose much greater cascading damage97

on other systems than they receive in return [13], and they seem to display a greater98

propensity to initiate cascading failure in other systems [14].99

Infrastructure systems can be disrupted in numerous ways, including deliberate100

attacks, component failures, and natural disasters. Much of the existing research101

on critical infrastructure protection, for instance, has focused on protecting infras-102

tructures against damage due to extreme weather or deliberate attacks [4, 15, 16].103

Component failure has been studied extensively in the field of reliability engi-104

neering (e.g., [17]) and in the various engineering disciplines (e.g., water [18],105

drainage [19], electricity [20], telecommunications [21], and transportation [22]).106

Disruption of networks has also been considered in operations research (e.g., [23]),107

computer science (e.g., [24, 25]), network reliability (e.g., [26, 27]), graph theory108

(e.g., [28, 29]), and network science (e.g., [30]).109

However, disruptions are not the only phenomena to have an impact on urban110

infrastructure. Infrastructure systems are influenced by a variety of factors, in-111
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cluding: (1) population growth, which can push the capacity constraints of legacy112

infrastructure; (2) component degradation, which can reduce component capacity;113

(3) maintenance activities, which can interdict flow through selected components,114

and; (4) planning interventions (e.g., the development of new residential subdivi-115

sions), which can have effects both on system topology and on demand patterns.116

In some cases, these factors can alter flow distributions so that resources needed117

by critical locations are dependent on unreliable infrastructure.118

Various research communities have advocated an integrated view of infras-119

tructure systems, and a growing body of work is available on interdependencies120

(e.g., [31, 32]). For instance, homeland security initiatives following the Septem-121

ber 11th terrorist attacks in the United States spurred numerous efforts addressing122

infrastructure interdependencies (e.g., [33]). Overviews of techniques for the mod-123

eling and simulating interdependent critical infrastructure systems may be found124

in several places, including [34].125

2.3. Modeling Interdependent Infrastructures with Networks126

One approach to analyzing interdependent infrastructure systems involvesmod-127

eling them as interdependent networks [32]. Interdependent (or multilayer [35])128

networks have received increasing amounts of attention of late, particularly from129

the physics and network science communities. A recent survey paper can be found130

in [36], while books on the topic are readily available (e.g., [37, 38, 32, 39, 40, 35]).131

Network � is dependent on network � if the state of � can influence the state132

of � [41] (see also [42]). Dependencies can be classified as follows [14]:1133

1. Physical dependencies, in which the state of � is affected by the material134

outputs/flows of �;135

2. Geospatial dependencies, in which certain components of � and � are in136

such close spatial proximity such that local events can affect both networks;137

3. Informational dependencies, in which � and � are connected by informa-138

tion and communications technology;139

4. Social dependencies, in which � affects � along social dimensions;140

5. Procedural dependencies, where � affects � on the basis of organizational141

or regulatory structures, and;142

6. Financial dependencies, wheremarket conditions, financial crises and other143

economic events allow one network to affect another.144

1Alternative classifications appear in [43, 44].
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There are many ways to represent these dependencies in network models, a dis-145

cussion of which is beyond the scope of the paper.146

2.4. Finding Critical Components in Interdependent Networks147

Numerous researchers have proposed methods for identifying critical compo-148

nents in interdependent networks. Typical examples are described below.149

Apostolakis and Lemon [45] evaluate the vulnerability of geospatially in-150

terdependent infrastructure systems (gas, water, electric) by identifying critical151

locations—geographical points that are susceptible to attack. Each system is rep-152

resented as a directed network in which vertices can represent not just junctions but153

also physical features (e.g., manhole covers). Co-location of assets (e.g., shared154

service tunnels) is modeled by allowing vertices from one graph to appear in an-155

other. (Physical dependencies, such as the use of electricity by the water system,156

are not modeled). In their approach, a set of attack scenarios is identified and157

the networks are analyzed in order to identify minimal cut sets (see [20]). The158

resulting vulnerabilities are prioritized by: (1) the degree to which the targets are159

accessible to the attacker (i.e., susceptibility), and; (2) the value of the targets160

from the standpoint of the decision-maker, calculated by summing their expected161

disutilities. The susceptibility and value are combined to yield a vulnerability162

category— one of five colors ranging from green to red.163

Lee et al. [43] provide a method for prioritizing service restoration activities164

in an interdependent system-of-systems. Each independent system is represented165

as a flow network that carries commodities, composed of edges and vertices that166

may both have capacity constraints. Dependencies are modeled as additional167

constraints in a mixed integer network flow model. In addition to geospatial and168

physical dependencies, they allow shared dependencies (i.e., for multi-commodity169

flow networks) and exclusive-or dependencies (i.e., to allow flow on a multi-170

commodity network to be restricted to one type of commodity at a time).171

Duenas-Osorio et al. [46] study the interdependency of electricity and water172

systems from a topological standpoint. Both geospatial and physical dependencies173

are modeled, with the water system requiring electricity for pumps, lift stations,174

and control units. Conditional probability distributions are used to model po-175

tential failures of water system components given failure of electricity system176

components. Three types of vertex removal strategies are used to model disrup-177

tions; for each such disruption, a set of metrics are calculated: (1) nodal degree;178

(2) characteristic path length [47]; (3) clustering coefficient [48], and; redundancy179

ratio. Flows of water or electricity are not modeled.180
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Buldyrev et al. [10] examine the impact of electricity system disruptions on181

the internet. Geospatial dependencies are modeled by assigning each internet182

server to the closest power station. Disruptions are initiated by removing power183

stations and tracking resulting nodal failures—in particular, a node E is considered184

to be failed if: (1) all of E’s neighboring nodes are failed, or; (2) the geospatially185

coupled node in the electricity network is failed. Nodes are ranked according to186

the consequences of removal. The authors argue that disruption of a small number187

of nodes in the electricity system is sufficient to provide cascading failures in the188

internet network.189

Galvan and Agarwal [49] perform vulnerability analysis on interdependent190

infrastructures by examining the impact of disruptions. Each infrastructure is191

represented as a flow network with a unique resource type. In each iteration of the192

analysis, a single node is selected for failure (disruption). After recomputing the193

flow solution, the algorithm identifies every node that is in violation of capacity194

constraints. These latter nodes are then disabled and the process repeats itself195

until no more failures occur. The authors introduce a new vulnerability metric196

-1, defined as the fraction of nodes that fail after the first step of the cascading197

failure process. After using -1 to rank nodes, they compare the results against198

traditional centrality measures (i.e., nodal degree, the flow value for the non-199

disrupted solution, and network efficiency).200

Svendsen and Wolthusen examine interdependent critical infrastructures in a201

series of papers [50, 51, 52, 53]. Their models represent multiple concurrent202

types of dependencies, categorized at a high level into storable and non-storable203

types. Each vertex E in a network can act as a producer or consumer of up to204

< different resources, and for each such resource E has a corresponding buffer.205

The authors investigate numerous issues, including the behaviour of systems with206

cyclic interdependencies.207

Kotzanikolaou et al [54] provide a method for identifying threats to infrastruc-208

ture systems that may have a significant cumulative effect. From a risk analysis209

table detailing the risks to particular infrastructures, the authors construct a risk210

dependency graph (“RDG”) in which: (1) a node represents an infrastructure sys-211

tem, and; (2) a directed edge - → . from system - to system . represents a212

risk dependency (i.e., - poses a risk to . ). Edges are labeled with risk values213

that represent the likelihood of disruption, as well as societal impact. The authors214

provide a method for computing higher order risks from such a graph.215

Stergiopoulos et al [55] use an RDG in combination with centrality measures216

(e.g., betweenness, eigenvector centrality, node degree) to identify critical systems.217

The centrality measures are computed in order to identify nodes that affect critical218

7



risk paths in the RDG. A decision-tree algorithm is then used to select a subset219

of these nodes for risk mitigation. Testing their approach on empirical data, the220

authors make a number of observations about the relationship between centrality221

and risk (e.g., that the most critical paths in the RDG tend to involve nodes with222

high centrality).223

Shahraeini andKotzanikolaou [56] provide amethod to aid in the design ofwide224

area measurement systems (“WAMS”), which are composed of the measuring and225

communications layers of a smart grid. The authors provide a model that captures226

the internal dependencies between these layers in a dependency graph. Given such227

a graph, the importance matrix of the bus components is determined, and then228

the importance metrics of all of the rest of the WAMS components are computed229

using a centrality measure. An optimization algorithm is used to distribute the230

importance of the WAMS elements in order to avoid single points of failure.231

Interestingly, while the authors acknowledge that the importance of power grid232

components is dynamic, changing over time, they use a non-temporal approach for233

the initial design of a WAMS.234

The present work is different from these examples of prior art. As discussed235

below, the entire set of interdependent systems is represented as a graph. Similarly236

to RDGs, each node is an individual infrastructure system. However, unlike RDGs,237

the edges in the graph do not represent risk dependencies; rather, they represent238

actual component-level interdependencies. Furthermore, the graph formed from239

the interdependent systems is used only for controlling the order of execution, and240

not for analysis.241

Of all the aforementioned works, the method in this paper is closest to Apos-242

tolakis and Lemon [45] in overall intent. In both cases the computational model243

allows for co-location. However, the present work also allows for physical depen-244

dencies, as well as dynamic behavior through the use of time series for key system245

variables. The temporal aspects of the current work also distinguish it from many246

of its predecessors.247
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3. Methodology248

The goal of this work is to explore means by which urban planners, municipal249

engineers and other decision makers can identify critical components of interde-250

pendent infrastructure networks. When embodied in software, such methods can251

be used to support decision makers engaged in maintenance scheduling, zoning,252

capacity planning, or other activities related to municipal infrastructure.253

3.1. Overview254

The paper provides an example of such amethod, based on a centrality measure255

that combines classical flow centrality [9] with concepts from critical infrastructure256

systems (e.g., [45]). The perspective in the paper is resource-based, focusing on257

the routes bywhich resources are delivered to consumers. Components are deemed258

critical to the extent that they are involved in facilitating the flow of resources to259

critical locations.260

Computation of the centrality measure, critical flow centrality (“CFC”), can261

be accomplished in several ways (see [57]). In the current paper, a discrete-valued262

approach is taken in which: (1) an infrastructure system is represented as a flow-263

network; (2) demands, capacities, and supply limits are given as integers, and;264

(3) each demand node in the network is assigned a real-valued criticality rating.265

Network flows are simulated with a standard maximum flow algorithm; once a266

flow has been defined, a search algorithm computes expected contribution of each267

component to the critical flow within the network.268

Since infrastructure networks are not independent of each other, physical and269

geospatial dependencies may be introduced between individual infrastructures.270

The most important of these for the present paper are physical dependencies in271

which resources provided by one system (e.g., electricity) are used by another272

system (e.g., water pumps). One of the main contributions of the paper is to show273

how CFC values can be propagated from one infrastructure system to another.274

The method is demonstrated by applying it to a district-level model of a city.275

Each structure has a type, a criticality rating, and a set of demand curves (time276

series) for resources. For reasons of brevity, only two infrastructure systems277

(electricity, water) are shown. The simple method provided in this paper also278

assumes that the physical dependencies between individual infrastructures are279

acyclic.280

The main thrust of the demonstration is to show that: (1) the computation281

of CFC values can be performed efficiently, enabling their use in interactive GIS282

applications; (2) CFC values can correctly propagate between system models,283
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and; (3) CFC computations can be integrated with standard reliability measures to284

provide a composite view of a system.285

The CFC measure itself is completely general, requiring only a flow solution286

and a network topology. The method presented in this paper uses the discrete287

algorithms to compute values for each individual infrastructure system—namely,288

(1) an integer-valued, maximum-flow algorithm to approximate resource flow289

within infrastructures, and; (2) a modified graph-search algorithm to compute CFC290

values. These design choices are for ease of explanation, and more sophisticated,291

heterogeneous systems can be accommodated. One can model a water system292

using hydraulic techniques [58], for example, coupling it to an electricity system293

that is simulated using its own domain-specific methods. Given a flow solution294

and network topology, CFC values can be computed by usingMarkov-chainMonte295

Carlo or random walks (see [57] for details).296

3.1.1. Integration with GIS297

This work was motivated by the problem of providing adequate decision sup-298

port for urban planning. For instance, densification of urban areas is accompanied299

by greater demand for resources; the increased demand could: (1) violate capacity300

constraints, as in the case of the London sewer systems [59, 60], or; (2) threaten301

the ability of a legacy infrastructure system to reliably deliver services to critical302

locations such as hospitals and transportation hubs. Urban planners could benefit303

from tools that allow them to visualize the impacts of land-use decisions on the304

provision of critical resources and/or services.305

Effective modeling of integrated infrastructure systems requires more than a306

static, single-perspective approach. Management of disruption (and prevention of307

cascading failures) requires an understanding of system dynamics [61]. Further-308

more, any model used to study the disruption of interdependent infrastructures309

needs to support two different perspectives [43]: (1) a ‘system-of-systems’ view310

that focuses on dependencies, and; (2) a traditional view of each individual system311

that is familiar to managers/specialists.312

One means of providing infrastructure models that support multiple perspec-313

tives is through the use of geographical information systems (“GIS”) software.314

In fact, the critical information protection community has begun to use GIS as a315

platform for resilience and vulnerability analysis [62]. For this reason, the method316

described in this paper was explicitly designed for integration within GIS software.317
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3.1.2. Data Sources318

Two major challenges arise when data sources are considered. First, data on319

infrastructure systems does not always exist, and particularly not in a form that320

permits detailed analysis of interdependencies. Second, infrastructure systems321

in many countries (e.g., the United States power grid) are not under the control322

of a single entity [61], making the data collection process difficult. The lack of323

information on infrastructure assets has motivated some researchers to develop324

techniques for inferring asset locations from proxy data sources (e.g., [63, 64]).325

The model used in this paper is a mixture of synthetic and empirical com-326

ponents. The basic topology (i.e., road and parcel structure) was taken from327

downtown Toronto, albeit the boundaries were simplified in order to make dia-328

grams feasible and to convey the basic method clearly. Resource demand data was329

obtained from published studies (e.g., [65]) and from municipal utilities.330

3.1.3. Implementation331

The sample method was implemented directly in C++ and OpenGL. Road and332

building information was obtained from OpenStreetMaps, imported into ESRI333

CityEngine, and edited manually to remove artifacts. Custom python scripts were334

used to export the road network topology, block/lot geometry, and building shapes335

from CityEngine to Extensible Markup Language (“XML”) files. Infrastructure336

systemswere createdmanually using the application’s editing functionality. Lastly,337

the diagrams shown in this paper were generated by exporting model geometry338

directly to Scalable Vector Graphics (“SVG”) format.339

3.2. Modeling Approach340

This section discusses the building blocks of the simplified model, including:341

(1) the network representation; (2) the use of time series for key system variables;342

(3) criticality ratings, and; (4) interdependencies.343

3.2.1. Network Representation344

An infrastructure system is modeled as a weighted, capacitated, flow network345

� = 〈+, �〉 where � is a set of nodes, � ⊆ + ×+ is a set of edges:346

• each node E ∈ �.+ has Euclidean coordinate ®F(E) = (EG , EH, EI) ∈ R3, as347

well as an (optional) capacity constraint 2(E) ∈ N.348

• each edge 4 = (E8, E 9 ) ∈ �.� has a capacity 2(4) ∈ N, a flow 5 (4) ∈ N,349

and a length ; (4) ∈ R defined as ‖ ®F(E8) − ®F(E 9 )‖2.350
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Each network � is a multi-graph in which multiple edges may connect a given351

pair of nodes, allowing for redundant (fallback) connections. Bi-directional rela-352

tionships, cycles, and self-loops are all permitted.353

As a flow network, � contains both source (supply) and sink (demand) nodes.354

The set of source nodes is +( = {B1, B2, . . . , B?} ⊆ + , and the set of demand355

nodes is +� = {31, 32, . . . 3: } ⊆ + with +( ∩ +� = ∅. All other nodes are356

called transmission nodes. Multi-functional nodes are supported using a standard357

maximum flow reduction (as described in Section 3.4.1).358

A flow on� is a real-valued function 5 : � → R on�’s edges that obeys three359

flow properties:360

1. Capacity Constraints: for all 4 = (E8, E 9 ) ∈ � , we have 5 (4) ≤ 2(4).361

2. SkewSymmetry: for all 4 = (E8, E 9 ) ∈ � , we have 5 ((E8, E 9 )) = − 5 ((E 9 , E8)).362

3. Flow Conservation: for all transmission nodes EC ∈ + − (+� ∪+(), we have363 ∑
E∈+ 5 ((EC , E)) = 0.364

Agiven network� supports a single type of resource/commodity, unlike the multi-365

commodity approach in [52]. The value of a flow is defined as the flow exiting366

the source nodes: | 5 | = ∑
E∈+

∑
B∈( 5 (B, E).367

3.2.2. Supply Constraints and Demand Distributions368

Supply constraints and resource demands are represented as discrete, integer-369

valued time series (see [66]). (While capacities can also be represented as time370

series, the demonstration assumes node and edge capacities are static.) For simplic-371

ity, each time series is assumed to be regularly sampled at times C8 ∈ ) = [0,∞].372

They can be interpreted as the output of functions:373

• Each supply node E ∈ +( may be assigned an optional supply constraint374

function 5 BE (C) : ) → N+ that gives the maximum amount of resource that375

may be supplied from E at time C.376

• Each demand node 3 ∈ +� has a mandatory demand function X3 (C) : ) →377

N+ that gives the amount of flow required by node 3 at time C.378

An assignment to a network involves specifying functions (time series) for all rele-379

vant nodes. Computations on the network (e.g., network flow solutions, criticality380

measures) are performed for each time C8 ∈ ) . Values from previous time steps381

C: may be used as input for computing values in the current time step C8 (where382

C: < C8). This permits the method to represent delays in resource utilization.383
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3.2.3. Criticality Ratings384

A criticality function 2A : +� → Rmaps demand nodes 3 ∈ +� to a criticality385

rating 2A (3). Although it is possible to use binary (e.g., critical, non-critical) or386

categorical (e.g., low, medium, high) representations, this paper focuses on the387

continuous variant in which criticality ratings take on values between 0 and 1.388

3.2.4. Interdependencies389

A system-of-systems (“SoS”) model consists of a set of : infrastructure systems390

S = {(1, (2, . . . , (: }. As shown in Figure 1, two types of dependencies are391

permitted between pairs of elements from S:392

1. geospatial dependencies, which arise when elements from network � are393

co-located with those from network �.394

2. physical dependencies, wherein elements in network � require resources395

flowing through network �.396

d3

n6 n5

n2

A: S1

n3S2

n1

d1

n4

n7

d2

n8

d7

n4

n7

n2

B:

S1
n6

n1

d3

n5

n9

d6

n8

d1

n3 d2

d5

d4

colocation

colocation

colocation

colocation

physical

physical

colocation

colocation

Fig. 1. Infrastructure systems (�) and (�), linked by geospatial and physical dependencies.

Dependencies are represented as interlinks between networks [35]. In contrast397

to Apostolakis and Lemon [45], nodes from one network (8 do not appear directly398

in another network ( 9 . This design choice makes it easier to integrate disparate399

modeling methods for each individual infrastructure system (see [67]).400

Interlinks representing physical dependencies are implemented with the use of401

interconnection records. Referring toFigure 2, let (1 represent awater distribution402
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system, and let (2 represent an electricity system. A dependency between water403

node E1 ∈ (1 and electricity node E2 ∈ (2 is represented by an interconnection404

record �'(E1, E2). The amount of resource ' demanded of (2 by E1 (e.g., the405

amount of electricity required to operate a given water pump) is given by a function406

5 ' : (1.+ → R. For instance, a pump at E1 might demand a constant amount of407

electricity per unit time, or it may require power proportional to the flow 5 (E1)408

through E1 (e.g., 5 ' (E) = 2 5 (E)). Delays can be accommodated by deferring this409

demand to later time steps.410

Block/Lot

Water

Electricity
Source

Source

Pump Pump

Fig. 2. Infrastructure model with two layers, showing resource flow between water pumps and
electricity nodes.

Dependencies between network elements imply dependencies between sys-411

tems. If an interconnection record exists that maps elements of (1 to elements412

of (2, we say that (1 is physically dependent on (2, represented as (1 → (2.413

Mutual dependency between systems makes the computational task more diffi-414

cult. The methods of Svendsen and Wolthusen (e.g., [52]) accommodate mutual415

dependencies using multi-commodity flows, but this approach does not allow for416

infrastructure-specific network representations and solution methods.417

In this paper, the set of physical (resource) dependencies between systems in418

S is taken to form a directed, acyclic graph (“DAG”) G that can be ordered with a419

topological sort (see [68]). In contrast, geospatial dependencies are not restricted420

in such a fashion.421
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3.3. Critical Flow Centrality422

TheCritical Flow Centrality (“CFC”) of a component is a measure of its role
in supplying resources to critical locations [57]. Recall that the flow in network �
(given assignment �) is the aggregate of all flows reaching the demand nodes:

�� (�) =
∑
3∈�

5� (3) (2)

The critical flow in network � (given assignment �) is the set of flows reaching
the demand nodes, weighted by criticality:

��� (�) =
∑
3∈�

5� (3)2A (3) (3)

A component 2 (i.e., node or edge) is deemed to be important to the extent that
it carries critical flow. Let 5� (2, 3) be the flow that reaches 3 ∈ � from 2 given
assignment �, and let � [ 5� (2, 3)] be its expectation. Then the critical flow
centrality (“CFC") of component 2 under assignment � is:

��� (2) =
∑
3∈+�

2A (3)� [ 5� (2, 3)]

This quantity may be normalized by the critical flow ��
�
(�):

�′�� (2) = �
�� (2)
��
�
(�)

=

∑
3∈� 2A (3)� [ 5� (2, 3)]∑

3∈� 2A (3) 5� (3)
(4)

Computing the CFC thus reduces to computing the probability ?(3 |2) that423

a unit of commodity passing through component 2 ends up in demand node 3.424

While there are numerous ways to accomplish this task (e.g., Markov chains), this425

paper uses a discrete, search-based approach.426

For each time step C, a flow solution � (C) is generated and represented in a427

secondary graph �′ that gives an adjacency-list representation of the stochastic428

transition matrix induced by � (C). All nodes of � are present in �′, but edges of429

� are only present if they have non-zero flow under � (C). Each node in �′ has430

an outgoing edge list that lists the probability that a unit of flow travels down an431

outgoing edge. Finally, each component (i.e., edge or non-demand node) 2 in �′432

has amap that lists the demand nodes reachable from 2 in�′. An entry in this map433

contains a tuple 〈3, %(3 |2)〉 that gives the probability that a unit of flow passing434

through 2 reaches demand node 3. Equation 4 can be computed from these maps.435
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The CFC calculation proceeds by performing a reverse depth-first search436

(“DFS”) on �′ for each demand node 3. When invoked, the DFS computes437

the probability that each edge or non-demand node in �′ sends flow to 3. A given438

node or edge (identified by an ID number) may be visited multiple times in the439

course of the search, requiring care to avoid pushing superfluous probability. (This440

method does not, however, work for graphs �′ that contain cycles).441

Function ComputeProbabilities(G’)
Data: G’, a graph with components (+, �) and absorbing nodes

� ⊆ + .
foreach 3 ∈ � do

ReverseSearch(G’, d)
end

Function ReverseSearch(G’, d)
Data: G’, as above.
Data: d, an absorbing node.
Var excess[] // array of numbers ∈ [0, 1] of size |+ |
Var stack
excess[d.ID] = 1
stack.push(d)
while stack not empty do

Var curNode = stack.pop()
Var amt = excess[curNode.ID] // probability to push
foreach incoming edge curEdge of curNode do

curEdge.map.IncrementOrAddProbability(d.ID, amt)
excess[curEdge.src.ID] = amt * curEdge.probability
stack.push(curEdge.src)

end
curNode.map.IncrementOrAddProbability(d.ID, amt)
excess[curNode.ID] = 0

end
Algorithm 1: Probability Calculation.

The IncrementOrAddProbability() function adds an amount of probability to442

the estimate of %(3 |2) stored in the map of component 2, creating the map entry443

if it does not exist. The variable 4G24BB is a lookup table (indexed by node ID)444

that contains probability values for each node. (The variables excess and amt are445

designed to deal with overlapping paths).446
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In the worst case, the map at each node or link stores |� | entries–one for each447

demand node in �′. Also in the worst case, every edge 4 ∈ � in � has flow and448

is in �′, yielding $ (( |+ | + |� |) |� |) in storage space. Since the ReverseSearch449

procedure is a modified DFS, the time required to compute probabilities for a given450

demand node is$ ( |+ |+|� |). Thus, callingReverseSearch on all |� | demand nodes451

in �′ yields $ (( |+ | + |� |) |� |). Infrastructure networks typically have |+ | ≈ |� |452

and |� | / 1
2 |+ |, giving Algorithm 1 time and space complexity of $ ( |+ |2).453

The running time of the entire method is thus dominated by the flow generation454

step, which is typically more expensive than $ ( |+ |2). The current paper uses the455

Edmonds-Karp algorithm (see [68]) for simplicity, which is$ ( |+ |2 |� |) on general456

graphs and $ ( |+ |3) on infrastructure networks. Although flows can be generated457

using a variety of techniques (e.g., simulation), the method in Algorithm 1 only458

applies if the transition graph �′ is acyclic. Alternative methods (e.g., simulation,459

Markov chains) can be used if cycles are present.460

3.4. An Algorithm for Interdependent Critical Flow Centrality461

Given a model S with interdependent sub-systems (1, (2, (3, . . . , (=, Algo-462

rithm 1 can be used to compute CFC values for all components in each (8 at463

each time step C. This is not sufficient, however, as physical dependencies must be464

accounted for. Resource demands and criticality values must be propagated from465

one sub-system to the other.466

Computation of the CFC for the entire model S proceeds by computing the467

CFC for each individual infrastructure system in topological order. Dependencies468

are processed from one system to the next in each iteration, passing demands469

from higher-level layers to lower-level ones. Algorithm 2 provides a high level470

overview:471
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Function ComputeInterdependentCFC(G)
Data: G, a graph with nodes +G = ( = {(1, (2, . . . , (: } representing

individual infrastructure systems, and edges �G formed from
physical dependencies between elements of +G .

ConvertNetworkRepresentation(G)
Var list← TopologicalSort(+G)
Var t← 0
foreach (8 ∈ list do

ComputeSingleSystemCFC((8)
end

Algorithm 2: Computing CFC for a set of interdependent infrastructures.

3.4.1. Converting Network Representations472

As a pre-processing step, conversion of network representations is performed473

to transform each individual network (8 into a format compatible with maximum474

flow algorithms.475

1. Nodes with demands are connected to a supersink node (see [68, 69]).476

2. Source nodes are connected to a supersource node.477

3. Nodes in network (1 that require resources from network (2 are represented478

in (2 by corresponding demand nodes.479

For step (3), the criticality for the nodes in (1 is only available after the CFC for all480

non-demand nodes has been computed. Thus, the full computation for (1 must be481

performed before any computations can be performed for (2. Figure 3 provides482

an illustration of network conversion.483

3.4.2. Computing CFC Values for a Sub-system484

Computation of the CFC for sub-system (8 proceeds in two stages: (1) flow485

values and criticality values are propagated from other layers (ℎ (ℎ < 8) according486

to dependencies, and; (2) the CFC for (8 is computed using the technique discussed487

in Section 3.3. If layer (8 supplies layer (ℎ with resources (e.g., it is an electricity488

network that supplies power to water pumps), then resource demands for (ℎ appear489

in (8’s network as sinks with appropriate demands. Topological ordering ensures490

that (ℎ’s criticality and flow values have been computed before (8’s. Algorithm 3491

provides an overview of single layer CFC computation.492

Propagation of criticality and flow values proceeds by examining the set of493

relevant interconnection records:494
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Fig. 3. Transformation of flow networks �1 and �2 with multiple sources ((8) and sinks (38).
Supersource (‘SS’) and supersink nodes (‘ss’) are added in the usual manner.

An interconnection record �'(E1, E2) (where E1 ∈ (ℎ, E2 ∈ (8) indicates a495

physical (resource) dependency between systems (ℎ and (8 (see Figure 4). De-496

mand and criticality values for E1 must be propagated to E2 before the maximum497

flow and CFC can be computed for (8.498

Algorithm 4 gives an overview of this process. Criticality values are copied499

directly, but the amount of resource that must be provided by E2 to E1 is determined500

by a function (e.g., the demand induced at E2 is half of the flow at E1).501
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Function ComputeSingleSystemCFC((8)
PropagateValues((8)
ComputeMaxFlow((8)
ComputeCFC((8)

Algorithm 3: Computing the CFC for a set of interdependent systems.

Fig. 4. An Interconnection Record used for Interdependencies.

Function PropagateValues((8)
foreach interconnection record �'(E1, E2) do

if E2 ∈ (8 .+ then
E2.demand← CalculateResultingDemand((E1, E2))
E2.criticality← E1.criticality

end
end

Algorithm 4: Propagation of resource demands.

Figure 5 shows a water system and electricity system that are interlinked in502

two locations: pumps near the source of the water system are fed by electricity503

nodes labelled � and �. A flow solution was first computed for the water system,504

yielding flows of 6063 litres and 5973 liters at the pumps. The induced demand505

at nodes � and � of the electricity system are half of the flow—namely, 3031 and506

2986 units.507

Note also that edges and verticeswith no flow are shown in black. The existence508

of such elements is an artifact of the Edmonds-Karp algorithm [69, 68] used in509

this simple instantiation, and one that would be corrected by using domain-specific510

methods (e.g., hydraulic simulation [58]).511
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Fig. 5. Interdependent flows. Demand values are in italics while flow values are in regular
font. Pumps in the water network are supplied with electricity by nodes A and B. Pumps require
electricity proportional to half of their water flow. Black edges/vertices have zero flow.

Figure 6 shows the CFC values for the same interdependent infrastructure512

system under the same flow solution. Criticality levels (ranging from 0 to 1) are513

shown in white font for the buildings. (Lot criticality is fixed at 0.02, and elided514

for brevity).515

Thanks to the propagation of both flow and criticality values from one network516

to the next, the criticality of the water pumps is appropriately represented in the517

criticality ratings of the electricity system. The electricity nodes � and � have518

inherited criticality values of 0.32 and 0.61 from the corresponding pump vertices519

in the water system; they require flow of 3031 and 2986 units, which the reader520

can verify by inspection are half of the flow values at the water pump.521
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Fig. 6. (Normalized) critical flow centrality, computed from the flows in Figure 5. Demand values
are in italics, CFC values are in regular font, and criticality ratings for buildings are in white. The
electricity nodes that supply the water pumps are given criticality ratings of 0.32 and 0.61 and
demands of 3031 and 2986 via Algorithm 4.

While most of the critical demand in the model is for the hospital (criti-522

cality=1.0) and secondary school (criticality=0.6), the pumps create significant523

critical demand in otherwise non-critical regions of the model. Figure 6 show524

that the electricity nodes supplying the pumps carry 16.7% and 8.7% of the total525

critical flow in the electricity network. It would be a poor decision to co-locate526

electrical assets with water assets when both are carrying highly critical flow.527
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4. Evaluation528

This section demonstrates the method by means of a district-level model of529

a city containing electricity and water systems. The simplicity of the model is530

for explanatory purposes; it is possible to use the method on models of greater531

complexity, provided that the physical interdependencies create a directed, acyclic532

graph.533

Each building/lot in the model is given: (1) a type (e.g., hotel); (2) a time534

series representing hourly demand for water; (3) a time series representing hourly535

demand for electricity, and; (4) a criticality rating in the interval [0, 1]. Time536

series are assumed to give average hourly demands over a 24-hour day. However,537

the method is general, and other scenarios could be supported, such as long-term538

(i.e., decadal) investigation of urban growth and its effect on capacity.539

Time series data is assigned to buildings according to type (e.g., secondary540

school, restaurant), while lots are assigned time series randomly drawn from a541

library of typical residential demand curves. For simplicity, criticality ratings542

and vertex/edge capacities are assumed to be static, although they could easily be543

represented with their own time series.544

Empirical data for different types of buildings in summer was obtained from545

several sources (e.g., water consumption data was sourced from the California546

Public Utilities Commission [65], electricity data fromOntario PowerGeneration).547

Examples of water demand curves appear in Figure 7 below:
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Fig. 7. Hourly time series showing water demands from a laundromat and hospital over an average
day. The time series have been normalized to create a probability distribution. For use in the CFC
method, these distributions are scaled by average water usage per day.

548

CFC values are computed for each time step C ∈ [1, )] by loading the relevant549

time series data for C and executing Algorithm 2. An overview of the process is550
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provided inAlgorithm 5. Upon termination of this procedure, each node and edge551

in the interdependent system has a set of CFC values — one for each time step —552

that can be used in statistical analysis.553

Function ComputeCriticaltyForTimeSeries(G)
foreach C ∈ [1, )] do

LoadDemands(G, C)
ComputeInterdependentCFC(G)

end
Algorithm 5: Computing CFC on a system-of-systems with time-varying
demands.

Figure 8 shows a graph of CFC values for the water network’s edges over the554

full 24-hour cycle:555

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

TIME

Fig. 8. CFC values for each edge in the water network.

The edge with a constant criticality rating of 1 is the lone edge incident to the556

source/reservoir. In general, the edges with significant criticality values tend to557

remain critical throughout the 24-hour cycle, with interesting behaviour happening558

during the middle of the day. Low criticality nodes become more critical during559

mid-day, when significant water demand begins to push capacity constraints.560

In contrast, the edges of the electricity network display a more stable distribu-561

tion. In Figure 9, one can clearly see that there are fewer intersections between562
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lines in the plot of electricity edge criticality values. The edge to the single source563

node again has a constant criticality rating of 1, and the fluctuation in criticality564

values of other major edges is much less pronounced. This is likely a consequence565

of the fact that the demand on the electricity network does not tend to push capacity566

constraints as much as the demand on the water network.567

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

TIME

Fig. 9. CFC values for each edge in the electricity network.

To recap, Algorithm 5 results in a set of CFC values ���C (2), where C is a
timestep and 2 is a component. For instance, the output for the water system edges
can be represented as a matrix���4F0C4A in which rows are timesteps and columns
are edges:

ILI4F0C4A =

���������
���1(41) ���1(42) ���1(43) . . . ���1(4 |� |)
���2(41) ���2(42) ���2(43) . . . ���2(4 |� |)

...
...

...
. . .

...

���: (41) ���: (42) ���: (43) . . . ���: (4 |� |)

���������
568

One major issue not addressed by classical works on network centrality (e.g., [9])569

is the choice of ranking method for component measures taken at different times.570

The most intuitive approach to ranking the components is to take the sample mean571

of each column and to subsequently rank columns in descending order. This would572

be an appropriate strategy if each row of the matrix was a sample from the space of573

assignments (i.e., in a Monte Carlo approach) at a given time C. However, the rows574
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in the matrix are assessments of the system at different points in time. The use of575

descriptive statistical measures (e.g., average, variance) elides system dynamics.576

The same is true of various other methods (e.g., spectral analysis, information577

theory) that might be employed to analyze the matrix.578

The choice of ranking approach is dependent upon the purpose of analysis.579

Consider a long-term (e.g., multi-year) analysis that attempts to study the distri-580

bution of critical flow patterns in response to changing population densities and581

land-use patterns. In such a setting, the long-term behaviour of the system is of582

interest.583

Figure 10 displays a situation in which criticality curves for two different584

components have the same integral but completely different trends over time. For585

a long-term (decadal) analysis of infrastructure criticality, the component with the586

orange criticality curve is clearly the more important of the two. In this setting,587

some form of trend-based, multi-variable time series analysis is required.588

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2044 2045 2046 2047 2048 2049 2050 2051 2052

TIME

Fig. 10. Two components with similar integrals but different long term behavior.

Since the time series in this paper represent average demands in a daily cycle,589

components are ranked according to the integral of their CFC curve. Taking the590

water network edges as an example, a cubic spline is defined on the set of sample591

points {(���1(4), ���2(4), . . . , ���: (4)} corresponding to edge 4 ∈ � .592

An integral is calculated from the cubic spline (as shown in Figure 11) and593

normalized by the maximum possible area "�-_��� · (: − 1) = 1 · 23 = 23594

(recall that CFC values are already normalized, so that the maximum CFC at any595

time step is 1). The result is then assigned to the edge 4 as its global CFC value596
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���� (4) for the entire time series. The set of all water network edges � is then597

ranked by sorting the edges according to their ���� values.598
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Fig. 11. Computing the global CFC value for a given component 4. A cubic spline is overlaid on
the CFC values for 4. The integral of the spline (blue) is computed and normalized by the total
area.

The same process is repeated for vertices, and for the other networks in the599

system-of-systems. Because of the way in which the critical flow centrality metric600

is defined, values for edges and vertices are commensurate, allowing a global601

ranking of all components in the interdependent system.602

5. Reliability603

This section demonstrates that the CFC measure may be combined with stan-604

dard approaches to network reliability—namely, (1) edge reliability measures, and;605

(2) “leave one out” failure analysis.606

5.1. Edge Reliability607

An arbitrary networkmodel can be augmented by adding a reliability function
A : � → [0, 1] that assigns edges 4 ∈ � a reliability rating A (4) ∈ [0, 1] [70]. One
can combine this approach with CFC measures by creating a composite measure
that estimates the joint reliability and criticality of a component. For instance, the
(normalized) Unreliable Critical Flow (“UCF”) for an edge 4 ∈ + is:

�′*�� (4) = �′�� (4) (1 − A (4))
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where �′�� (4) is the normalized CFC for edge 4. (The UCF is ‘normalized’ since608

values lie in the range [0, 1], since �′�� (4) and A (4) are both in [0, 1].) Under609

this measure, components are important to the degree that they are: (1) unreliable,610

and; (2) instrumental for the delivery of resources to critical locations.611

The computation of the UCF measure can be accomplished with a slight612

modification to the algorithm for the CFC. Instead of a static value A (4), the613

reliability rating for a network component 4 can also be represented as a time614

series '4 = {A41, A42, . . . , A4: }. This allows the modeler to represent different615

processes (e.g., decreasing reliability of components over long time periods).616

The UCF measures are computed for each timestep C using the CFC values617

and reliability ratings at C. The end result is a matrix in which entry (8, 9) gives618

the UCF values for each edge 4 9 at timestep 8. As in the case of the CFC, a cubic619

spline is overlaid on the values for each edge, creating an unreliability curve. After620

computing the integral and dividing it by the maximum possible area, the global621

UCF value for edge 4 is computed.622

Geospatial dependencies between infrastructure components can be introduced623

into edge reliability analysis in a number of ways. For example, edges that are624

co-located (e.g., a water pipe and electricity pipe sharing the same service tunnel)625

could be forced to share the same reliability rating. Co-located components could626

also be assigned a reliability penalty that reflects the fact that component failures627

are no longer completely independent.628

5.2. “Leave One Out” Failure Analysis629

CFC measures can also be used with a common form of reliability analysis630

in which components are deliberately failed or degraded (e.g., by reducing their631

capacity) in order to assess the effects on the system. A component 4 may have a632

high CFC value under a given assignment, but it may be the case that if 4 suffers633

a (partial) failure there are other routes (i.e., fallbacks) through which flow may634

travel in order to satisfy critical demand. Figure 12 illustrates this situation.635

This formof failure analysis provides an indication ofwhether there are fallback636

routes that can supply critical flow in the event that a component 4 fails. If the637

failure of 4 consistently results in reduced critical flow across the entire network,638

one can assume that 4 is even more critical than the CFC measure alone might639

suggest.640

Algorithm 6 shows a high-level view of a procedure in which capacities of
edges in an infrastructure system are degraded one-at-a-time. For each time C < ) ,
appropriate demands and criticality values are loaded into the graph. Then each
edge 4 ∈ � is considered in order, degrading its capacity and performing the CFC
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Fig. 12. Two networks with different behaviour in edge failure scenarios. Network A carries most
of its critical flow through the path {41, 42, 43}. In case of edge failure, no alternative paths are
available. Network B has a fallback route in case edge 43 fails.

computation on the altered network. The critical flow is then used to create a
loss measure that indicates the amount of critical flow that is lost when edge 4 is
degraded. The failure loss �!C (4) for edge 4 ∈ � at time C is:

�!C (4) = 1 −
∑
3∈+� 5� (3, C)2A (3, C)∑
3∈+� X(3, C)2A (3, C)

where (recalling Section 3.2.2) +� is the set of demand nodes in �, X(3, C) is the641

demand at time C from demand node 3, 5� (3, C) is the actual flow to 3 at time C, and642

2A (3, C) ∈ [0, 1] is the criticality rating for 3 at C. Failure loss values range from 0643

(no effect on resource delivery) to 1 (absolute disruption of resource delivery).644

Function PerformEdgeFailureAnalysis(()
foreach C ∈ [1, )] do

LoadDemands((, C)
foreach 4 ∈ � do

Var originalCapacity← e.capacity
e.capacity← Degrade(e.capacity)
ComputeSingleSystemCFC(S)
ComputeFailureLoss(S)
e.capacity← originalCapacity

end
end

Algorithm 6: Edge failure analysis on network ( with time-varying demands.

The edge failure mechanism was tested on the network from Figure 5 by645

degrading the capacity of each edge 4 to 0. (Demands and criticality ratings were646
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the same as in previous sections.) The failure loss �!C (4) was computed for each647

edge 4 at each time C ∈ [0, 23] and averaged over the 24 hour cycle to create648

an aggregate failure loss metric. The CFC values for each edge 4 were likewise649

averaged over the same time frame.650

Figure 13 shows both the averaged CFC and averaged FL metrics for the651

edges of the water network. Two facts are immediately obvious. First, the vast652

majority of edges have negligible average CFC and FL values. These are typically653

low-capacity feeds from a residential street’s water pipe to an individual lot/parcel.654

CFC

FL

Fig. 13. Averaged failure loss (FL) and averaged critical flow centrality (CFC) on the edges of the
water network in Figure 5, computed over a 24-hour period. The majority of edges (e.g., those
that feed individual lots) have negligible FL and CFC values.

Second, a significant percentage of of those edges with high CFC ratings also655

have low FL values. Although these pipe segments carry a sizable amount of656

critical flow, alternative routes are available in case they should suffer individual657

failures. Examples include the pipes that define the loops around residential blocks;658

these loops are resistant to individual failure, since there are two paths from the659

entry point of the loop to any lot/parcel.660

Of course, the main pipes from the reservoir have no backups, as demonstrated661

by the overlap of FL and CFC values for edge 320. In general, the correlation of FL662
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and CFC ismildly significant but also somewhat misleading as a summary statistic.663

With a different network topology that included multiple sources and alternative664

paths, one would expect less correlation between the FL and CFC values, making665

the easily computable CFC a poor predictor of the consequences of edge failures.666

5.3. Reliability Integration Limitations and Assumptions667

The edge failure analysis presented above was subject to several simplifying668

assumptions. First, geospatial dependencies were not included in the analysis669

for reasons of brevity. Second, the failure loss analysis is performed on each670

subsystem independently, given a flow solution for the entire system-of-systems;671

handling interdependencies requires iterative methods. Third, the reliability mea-672

sures could also incorporate component capacity, in order to capture the intuition673

that a component nearing its maximum load is likely to be less reliable.674

Fourth, the definition of the FL metric uses the aggregate of all demands at675

the network’s demand nodes as the normalizing factor. This is appropriate for a676

networkwhere all demands are satisfied in the baseline state, but itwill overestimate677

losses in networks which exhibit unsatisfied demand. For the scenario utilized in678

this paper, however, this assumption is reasonable.679

This method outlined in this work does not assume that the methods used to680

model each layer are commensurate. That is, the electricity layer may be modeled681

with one set of domain-specific techniques, while the water layer may be modeled682

with another. All that is required is for each layer to provide a means of flow683

computation and a basic network topology. This design decision, while useful684

from a software engineering perspective, precludes the use of standard approaches685

to modeling cascading failures.686

Tomodel physical dependencies and cascading failure in such a setting requires687

the use of additional machinery. Component failure in the electricity system could688

result in reduced power levels at the water pumps; this, in turn, could alter water689

distribution flows, result in reduced electricity demand from other components of690

the water system—thereby changing demand patterns for the electricity system.691

Thus, the result is an equilibrium problem in which changes in one layer percolate692

through other layers, and then back again. Solving such a problem is well beyond693

the scope of this paper.694

6. Conclusion695

This paper demonstrated how component importance measures based on the696

notion of critical flow may be applied to interdependent, urban infrastructure697
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systems. The motivation for the work was to provide urban planners and municipal698

engineers with a method of reasoning about the impacts of interventions on the699

flow of resources to critical locations. The main theme was that network analysis700

techniques could be combined with criticality and reliability metrics in order to701

produce composite methods that provide useful information to stakeholders.702

The perspective of the method was resource-based, focusing on the ways in703

which system components participate in the delivery of resources. Each individ-704

ual infrastructure system (8 of a composite system S was represented as a flow705

network with demands, capacities, supply limits, and criticality ratings. The paper706

considered physical dependencies in which one subsystem (8 requires resources707

from another subsystem ( 9 .708

In the simple variant described in the paper, network flows and the critical709

flow centrality (“CFC”) measure were computed using a discrete approach. More710

sophisticated variants are possible, including the use of domain-specific simulation711

techniques. For simplicity, the paper assumed that the subsystem dependencies712

form a directed acyclic graph.713

The method was demonstrated by use of a simple, district-scale model of a714

city that contained electricity and water networks. Empirical data was used to715

estimate resource consumption for different types of buildings, yielding a set of716

demand curves that represent consumption in a 24-hour cycle. This decision717

simplified the analysis, and allowed the use of integrals to compute a global CFC718

value for the entire cycle. For the study of trends in infrastructure systems over719

time, the integral-based aggregation would need to be supplanted by trend-based,720

multi-variable time series analysis.721

Despite the simplifying assumption, the simple method presented in the paper722

satisfied the goals outlined in Section 3.1. First, the computation of CFC metrics723

for an interdependent system can be computed efficiently. For a model S =724

{(1, (2, . . . , (: } consisting of : subsystems, computation of CFC metrics for S on725

typical infrastructure networks is $ (+2), where + is the average number of nodes726

in the subsystems. This compares favorably with other centrality measures, which727

can be $ (+3) or greater.728

Second, the demonstration showed that the basic method correctly propagates729

resource demand, criticality ratings and CFC values between systems. Not only730

are CFC values comparable across components within a given system, but they are731

commensurable across systems—even in cases where disparate modeling method-732

ologies have been used.733

Third, the paper showed how common network reliability approaches can be734

combined with CFC measures to yield composite metrics. Edge reliability can be735
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directly integrated into the CFC framework by adding another attribute to the edges736

and tweaking the CFC computation slightly. The paper also discussed edge failure737

analysis, showing that a composite failure loss metric can be defined that gives738

an indication of the availability of fallback routes for the delivery of resources to739

critical locations.740

Many avenues of future work remain, the most important of which is removing741

the restriction of G to directed, acyclic graphs. To do so invites consideration of742

equilibrium concerns—that is, changes in one network cause changes in others,743

altering flow distributions and demand patterns in complex ways. Providing744

solutions for this type of problem is well outside the scope of the present paper.745

The version of the CFC computation presented in this paper is suitable for746

medium/long time horizons only, as it uses integer-valued representations for747

both demands and capacity constraints. This decision, which was made in order748

to simplify the problem and avoid numerical instability, means that short-term749

dynamics are difficult to represent. As a consequence, rates of change (e.g., of750

flow) on system components cannot be analyzed precisely. The use of floating point751

representations and domain-specific flow computation methods (e.g., simulation)752

will avoid this limitation.753

Evenwith this restriction in place, there are still additional issues to be resolved.754

First, a more realistic flow mechanism (e.g., domain-specific methods) should755

replace the generic Edmonds-Karp algorithm that favors shortest paths (thereby756

introducing artifacts into the flow solution). Second, geospatial dependencies757

should be introduced into both the edge reliability and component failure analyses.758

Additional avenues of future research were hinted at throughout the paper.759
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