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Abstract

This paper applies centrality measures based on critical flows to interdependent
networks in which demands vary over time. These component importance measures
combine classical flow centrality with concepts from critical infrastructure protection.
In a previous work, the utility of critical flows was demonstrated on a flow network
that represented a single infrastructure system with static demands. The present work
considers the setting where multiple infrastructure systems are interlinked through
physical and geospatial dependencies, and where demands for resources vary over
time. Since critical flow measures are specific to flow patterns, and not to static
network topology, the identification of critical elements requires statistical means.
This paper demonstrates one such approach, leaving avenues open for future research.
It also presents two forms of reliability analysis based on critical flows — a composite
measure using edge reliability, and component failure/degradation analysis.

1 Introduction

Residents of cities depend on infrastructure systems to deliver not only physical resources
such as water and gas, but also a range of social goods ranging from education to health-
care. Disruptions in the delivery of essential services can have extremely deleterious
consequences for both individual residents and a city as a whole. As a result, under-
standing the reliability of urban infrastructure systems should be considered a priority for
municipal governments.

Infrastructure systems can be disrupted in numerous ways, including deliberate at-
tacks, component failures, and natural disasters. Much of the existing research on critical
infrastructure protection, for instance, has focused on protecting infrastructures against
damage due to extreme weather or deliberate attacks [27, 13, 28]. Component failure has
been studied extensively in the field of reliability engineering (e.g., [8]) and in the various
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engineering disciplines (e.g., water [15], drainage [31], electricity [12], telecommunica-
tions [40], and transportation [49]). Disruption of networks has also been considered in
operations research (e.g., [50]), computer science (e.g., [54, 52]), network reliability (e.g.,
[22, 11]), graph theory (e.g., [44, 23]), and network science (e.g., [17]).

This work offers a somewhat different perspective. It is not concerned with disruptive
events that are short-lived in duration; instead, it focuses on the behaviour of an infrastruc-
ture system as it responds to changes in demand or capacity over time. For instance, the
degradation of system components can reduce system capacity over longer time horizons,
while population growth and the introduction of high density neighborhoods can result in
increasing demand for resources. Stated simply, this work is inspired less by terrorism and
natural disasters than it is by the evolution of cities.

The author’s previous paper [53] introduced a new set of component importance
measures (“CIMs") that combine flow centrality and location criticality in the context
of supply/demand networks. In this approach, the flow through a component is deemed
‘critical’ to the extent that it delivers resources to critical locations. For reasons of brevity,
the author limited the demonstration to a single infrastructure system with static demands.

The current paper extends that previous work to interdependent networks in which
demands vary in time. Since the goal of the overall project is to provide urban planners
and municipal engineering staff members with a means of reasoning about the long term
impacts of changes to urban infrastructure, the ability to represent changing demand pat-
terns is absolutely necessary. For brevity this paper considers only geospatial and physical
dependencies, but the method can be extended to consider other forms of connection
between infrastructure systems.

The structure of this paper is as follows. Section 2 provides background on interde-
pendent networks. Section 3 introduces the methodology used in this paper, including the
network representation. Section 4 provides an evaluation of the methodology on a small
model of a city. Section 5 discusses two forms of reliability analysis that can be performed
with critical flow techniques. The paper closes with suggestions for future research.

2 Background

Although infrastructure systems are often studied in isolation in the specific engineering
disciplines, they are typically coupled to the extent that the failure of components in one
system can cause failures in connected systems [10]. In order to understand potential
failure modes — as well as properties like vulnerability and resilience — system engineers
require methods that represent urban infrastructure as a set of interdependent systems.
One salient reason for modeling interdependencies is that connected infrastructure
systems are typically more fragile than solitary systems [51]. Not only do such systems
have additional failure modes (e.g., cascading failures [56]), but the impact of such
failures is difficult to predict. For example, water distribution systems impose much
greater cascading damage on other systems than they receive in return [55], and they seem



to display a greater propensity to initiate cascading failure in other systems [24].

Various research communities have advocated an integrated view of infrastructure
systems, and a growing body of work is available on interdependencies (e.g., [36, 21]).
For instance, homeland security initiatives following the September 11th terrorist attacks
in the United States spurred numerous efforts addressing infrastructure interdependencies
(e.g., [39]). Overviews of techniques for the modeling and simulating interdependent
critical infrastructure systems may be found in several places, including [35].

2.1 Requirements for Interdependent Models

In modeling integrated infrastructure systems, a static view is not sufficient. As argued
by Amin [2], management of disruption (and prevention of cascading failures) requires an
understanding of system dynamics as well as methods of distributed control. CIMs that
are based solely on structural properties (e.g., betweenness centrality [32]) should be used
alongside measures that account for system dynamics.

Furthermore, any model used to study the disruption of interdependent infrastructures
needs to support two different perspectives [26]: (1) a ‘system-of-systems’ view that
focuses on dependencies, and; (2) a traditional view of each individual system that is
familiar to managers/specialists. In the context of this paper, this implies that any useful
method for urban infrastructure analysis should offer perspectives suitable for specialists,
including urban planners.

One useful means of accomplishing this goal is to deploy such models as modules for
interactive geographic information systems (“GIS") software. Commercial GIS packages
such as ESRI ArcGIS are widely used by municipal governments. GIS software is also
widely understood by practitioners from a variety of professional disciplines. Lastly, the
critical information protection community has begun to use GIS as a platform for resilience
and vulnerability analysis [7].

No matter what deployment method is chosen, the task of translating abstract modeling
methodologies into working artifacts is made difficult by at least two major constraints.
First, infrastructure systems in many countries (e.g., the United States power grid) are
not under the control of a single entity; rather, numerous organizations exist with rights
(e.g., ownership) over portions of the system [2]. Second, data on infrastructure systems
is not readily available, and particularly not in a form that permits detailed analysis of
interdependencies. The fact that municipalities lack detailed information on infrastructure
assets has motivated some researchers to develop techniques for inferring asset locations
from proxy data sources (e.g., [29, 30]).

2.2 Interdependent Networks

Of particular relevance to this work is the literature (scattered across numerous research
communities) on interdependent networks (a.k.a., ’interconnected’, ‘multi-plex’ or ‘multi-
level’ [21]). This area has received increasing amounts of attention in the last 5 years,



particularly from the physics and network science communities. A recent survey paper
can be found in [9], while books on the topic are readily available (e.g., [38, 16, 21, 3, 4]).

To fix terminology, define network A to be dependent on network B if the state of B
can influence the state of A [41] (see also [33]). Dependencies can take many forms [24]:
(1) physical, in which the state of A is affected by the material outputs/flows of B; (2)
geospatial, in which certain components of A and B are in such close spatial proximity
such that local events can affect both networks; (3) informational, in which A and B are
connected by information and communications technology (“ICT"); (4) social, in which
A affects B along social dimensions; (5) procedural, where A affects B on the basis
of organizational or regulatory structures, and; (6) financial, where market conditions,
financial crises and other economic events allow one network to affect another. (Alternative
classifications appear in [26, 37]).

2.3 Finding Critical Components in Interdependent Networks

Numerous researchers have proposed methods for identifying critical components in in-
terdependent networks. Typical examples are described below:

* Apostolakis and Lemon [5] evaluate the vulnerability of geospatially interdependent
infrastructure systems (gas, water, electric) by identifying critical locations —
geographical points that are susceptible to attack. Each system is represented as a
directed network in which vertices can represent not just junctions but also physical
features (e.g., manhole covers). Co-location of assets (e.g., shared service tunnels)
is modeled by allowing vertices from one graph to appear in another. (Physical
dependencies, such as the use of electricity by the water system, are not modeled).

In their approach, a set of attack scenarios is identified and the networks are analyzed
in order to identify minimal cut sets (see [12]). The resulting vulnerabilities are
prioritized by: (1) the degree to which the targets are accessible to the attacker (i.e.,
susceptibility), and; (2) the value of the targets from the standpoint of the decision-
maker, calculated by summing their expected disutilities. The susceptibility and
value are combined to yield a vulnerability category — one of five colors ranging
from green to red.

* Lee et al. [26] provide a method for prioritizing service restoration activities in
an interdependent system-of-systems. Each independent system is represented as a
flow network that carries commodities, composed of edges and vertices that may
both have capacity constraints. Dependencies are modeled as additional constraints
in a mixed integer network flow model. In addition to geospatial and physical depen-
dencies, they allow shared dependencies (i.e., for multi-commodity flow networks)
and exclusive-or dependencies (i.e., to allow flow on a multi-commodity network to
be restricted to one type of commodity at a time).



* Duenas-Osorio et al. [18] study the interdependency of electricity and water systems
from a topological standpoint. Both geospatial and physical dependencies are
modeled, with the water system requiring electricity for pumps, lift stations, and
control units. Conditional probability distributions are used to model potential
failures of water system components given failure of electricity system components.
Three types of vertex removal strategies are used to model disruptions; for each such
disruption, a set of metrics are calculated: (1) nodal degree; (2) characteristic path
length [25]; (3) clustering coefficient [32], and; redundancy ratio. Flows of water
or electricity are not modeled.

* Buldyrev et al. [10] examine the impact of electricity system disruptions on the
internet. Geospatial dependencies are modeled by assigning each internet server to
the closest power station. Disruptions are initiated by removing power stations and
tracking resulting nodal failures — in particular, a node v is considered to be failed
if: (1) all of v’s neighboring nodes are failed, or; (2) the geospatially coupled node
in the electricity network is failed. Nodes are ranked according to the consequences
of removal. The authors argue that disruption of a small number of nodes in the
electricity system is sufficient to provide cascading failures in the internet network.

* Galvan and Agarwal [20] perform vulnerability analysis on interdependent infras-
tructures by examining the impact of disruptions. Each infrastructure is represented
as a flow network with a unique resource type. In each iteration of the analysis, a
single node is selected for failure (disruption). After recomputing the flow solution,
the algorithm identifies every node that is in violation of capacity constraints. These
latter nodes are then disabled and the process repeats itself until no more failures
occur.

The authors introduce a new vulnerability metric X, defined as the fraction of nodes
that fail after the first step of the cascading failure process. After using X; to rank
nodes, they compare the results against traditional centrality measures (i.e., nodal
degree, the flow value for the non-disrupted solution, and network efficiency).

» Svendsen and Wolthusen examine interdependent critical infrastructures in a series
of papers [46, 45, 47, 48]. Their models represent multiple concurrent types of
dependencies, categorized at a high level into storable and non-storable types. Each
vertex v in a network can act as a producer or consumer of up to m different resources,
and for each such resource v has a corresponding buffer. The authors investigate
numerous issues, including the behaviour of systems with cyclic interdependencies.



3 Methodology

The work described in this paper can be viewed as a further development of prior art that
incorporates insights from critical infrastructure protection (e.g., [5]) and urban planning.
It provides a method to identify critical components in physically and geospatially interde-
pendent [26] flow networks as demands vary over time. Unlike previous work, the method
is intended for use in interactive software applications (e.g., GIS software [7]).

3.1 Network Representation

As in the preceding work [53], an infrastructure system is represented as a weighted,
capacitated, flow network G = (V, E) where G is a set of nodes, E C V X V is a set of
edges, and:

* eachnode v € G.V has Euclidean coordinate w(v) = (vy, vy, v;) € R3, as well as an
(optional) capacity constraint c¢(v) € N.

* each edge e = (v;,v;) € G.E has a capacity c(e) € N, aflow f(e) € N, and alength
I(e) € R defined as [[W(v;) — w(v))ll.

Note that each network G is a multi-graph in which multiple edges may connect a given
pair of nodes, allowing for redundant (fallback) connections. Bi-directional relationships,
cycles, and self-loops are all permitted.

A network G contains both source (supply) and sink (demand) nodes. The set of source
nodesis Vs = {s1,s2,...,5,} C V, and the set of demand nodesis Vp = {d|, d, ... di} €
V. All other nodes are called transmission nodes. A flow on G is a real-valued function
f  E — Ron G’s edges that obeys three flow properties:

1. Capacity Constraints: for all e = (v;,v;) € E, we have f(e) < c(e).
2. Skew Symmetry: for all e = (v;,v;) € E, we have f((vi,v;)) = = f((vj,vi)).

3. Flow Conservation: for all transmission nodes v, € V — (Vp U Vg), we have

2vev f((ve,v)) =0.

Note that each network carries a single type of resource/commodity, unlike the multi-
commodity approach in [47]. The value of a flow is defined as the flow exiting the
source nodes: |f| = X, cv Dses f(s,v). While a network with multiple source and sink
nodes may be reduced to a network with a single sink and source (see [14]), the explicit
representation is used throughout this paper. Note also that any node may supply or
demand resources, but for simplicity the example in this paper uses disjoint sets for supply,
transmission and demand nodes. (Multi-functional nodes are handled using a standard
maximum flow reduction in the network conversion process, described in Section 3.5.1).



3.2 Supply Constraints and Demand Distributions

In contrast to the previous work [53], the model in this paper is explicitly temporal. Supply
constraints and demand distributions are no longer given as integers, but as discrete time
series (see [43]). For simplicity, each time series is assumed to be regularly sampled at
times ; € T = N* = [0, oo]. The model takes two types of time series, represented here as
the output of functions:

* Each supply node v € Vg may be assigned an optional supply constraint function
f3(t) : T — N* that gives the maximum amount of resource that may be supplied
from v at time ¢.

* Each demand node d € Vp has a mandatory demand function 6,(¢) : T — N7 that
gives the amount of flow required by node d at time ¢.

An assignment to a network involves specifying demand functions for all demand nodes,
and (if desired) supply constraint functions for all supply nodes. From a data perspective,
they can be viewed as discrete, regularly sampled time series that may come from either
probability models or external data sources (e.g., real world data obtained from smart
meters).

In the simple embodiment presented in this paper, computations on the network (e.g.,
network flow solutions, criticality measures) are performed for each time #; € T. Values
from previous time steps #; may be used as input for computing values in the current time
step t; (where ;, < t;). This permits the method to represent delays in resource utilization.

3.3 Ciriticality Metrics

As in the previous work [53], a criticality function cr : Vp — R maps demand nodes
d € Vp to a criticality rating cr(d). Although three types of criticality function exist (i.e.,
binary, categorical, and continuous), this paper focuses on the continuous representation
in which cr(d) € [0.1]. The critical flow centrality (“CFC") of a node v € V under
assignment A is:
CFw) = 3 e dELfAm.d)]
deVp

where fa(v;, d;) is the flow that reaches d; € Vp from node v; € V under assignment A
and E[ fa(v, d)] is its expectation. (A similar definition holds for edges). The CFC is the
sum of all expected amounts of flow being delivered via v to the demand nodes, weighted
by their criticality. An algorithm for computing the CFC was provided in [53].



3.4 Interdependencies

A system-of-systems (“SoS") model consists of a set of k infrastructure systems & =
{81, 82, ...,8k}. As shown in Figure 1, two types of dependencies are permitted between
pairs of elements from S:

1. geospatial dependencies, which arise when elements from network A are co-located
with those from network B. Co-location of nodes, for example, is an equivalence
relation on {v : v € Ug,es Si.V}.

This type of dependency is implemented by storing information on co-located net-
work elements in a secondary table data structure. In an interactive application,
these dependencies can be suggested automatically by using location information
w(v) for a node v.

2. physical dependencies, wherein elements in network A require resources flow-
ing through network B. Physical dependencies between nodes, for example, are
irreflexive, asymmetric and transitive relations.

Dependencies are represented in higher-level data structures and not directly in the net-
works themselves. For example, vertices from one network S; do not appear directly in
another network S; (in contrast to [5]). This design choice makes it easier to integrate
disparate modeling methods for each individual infrastructure system (see [42]).

colocation

Fig. 1. Two independent infrastructure systems (A) and (B), linked by geospatial and
physical (e.g., flow-related) dependencies.



Physical dependencies are represented by inferconnections between network elements.
Referring to Figure 2, let S; represent a water distribution system, and let S, represent
an electricity system. A dependency between water node v; € S; and electricity node
vy € S, is represented by an interconnection record /R(vi, v,) stored in a secondary data
structure. The amount of resource R demanded of S, by v; (e.g., the amount of electricity
required to operate a given water pump) is given by a function fR : $;.V — R. For
instance, a pump at v; might demand a constant amount of electricity per unit time, or it
may require power proportional to the flow f(v1) through v| (e.g., fR(v) = cf(v)). Delays
can be accommodated by deferring this demand to later time steps.

= Block/Lot
A/ /[ ]
Water
Electricity

Fig. 2. Infrastructure model with two layers, showing resource flow between water pumps
and electricity nodes.

Dependencies between network elements imply dependencies between systems. If an
interconnection record exists that maps elements of S; to elements of S, we say that S;
is physically dependent on S,, represented as S| — S,. Mutual dependency between
systems makes the computational task more difficult. The methods of Svendsen and
Wolthusen (e.g., [47]) accommodate mutual dependencies using multi-commodity flows;
however, this approach does not allow for infrastructure-specific network representations
and solution methods.

In this paper, the set of physical (resource) dependencies between systems in S is taken
to form a directed, acyclic graph (“DAG") G that can be ordered with a topological sort
(see [14]). In contrast, geospatial dependencies are not restricted in such a fashion.

Finally, criticality ratings are preserved via physical dependencies. For demand nodes
d in §; that also have physical dependencies on resources in Sy, the criticality of d in S
is associated with the corresponding demands in $>. For a non-demand node v in Sy, the
CFC value for v is associated with the corresponding demands in S,. This is explained in
more detail below.



3.5 An Algorithm for Interdependent Critical Flow Centrality

Critical flow computation in an interdependent network is carried out in an iterative
manner. Recalling prior work in [53], the framework for computing the CFC for an
individual (single) infrastructure system consists of four elements:

1. arepresentation of an infrastructure system as a flow network;
2. criticality metadata for nodes (i.e., demand values, criticality ratings);
3. a means of calculating flows;

4. ameans of determining the probability that a given network component (node, link)
carries flow to a given demand node;

The method presented in the present work proceeds by computing the CFC for each
individual infrastructure system in topological order. Dependencies are propagated from
one system to the next in each iteration, passing demands from higher-level layers to
lower-level ones. Algorithm 1 provides a high level overview:

Function ComputelnterdependentCFC(G)

Data: G, a graph with nodes Vg = S = {51, 52, ..., Sk} representing individual
infrastructure systems, and edges Eg formed from physical
dependencies between elements of V.

ConvertNetworkRepresentation(G)

Var list < TopologicalSort(Vg)

Vart <« 0

foreach S; € list do

ComputeSingleSystemCFC(S;)
end
Algorithm 1: Computing CFC for a set of interdependent infrastructure systems.

3.5.1 Converting Network Representations

To use the techniques from [53] on an SoS model, conversion of network representations is
performed to transform each individual network S; into a format compatible with maximum
flow algorithms.

1. Nodes with demands are connected to a supersink node (see [14, 1]).
2. Source nodes are connected to a supersource node.

3. Nodes in network S; that require resources from network S are represented in S,
by corresponding demand nodes.

10



In the case of (3), the criticality for the nodes in S; is only available after the CFC
for all non-demand nodes has been computed. Thus, the full computation for S; must
be performed before any computations can be performed for S,. Figure 3 provides an
illustration of network conversion.

Fig. 3. Two independent infrastructure systems S; and S,, transformed into flow networks
suitable for the Edmonds-Karp algorithm. Supersource and supersink nodes (‘ss’) are
added in the usual manner.

3.5.2 Single Layer Computation

Computation of the CFC for each individual infrastructure system S; proceeds in two
stages: (1) flow values and criticality values are propagated from other layers Sy, (h < i),
and; (2) the CFC for S; is computed according to the methods in [53]. If layer S; supplies
layer S;, with resources (e.g., it is an electricity network that supplies power to water
pumps), then resource demands for S, appear in §;’s network as sinks with appropriate
demands. (The use of topological ordering ensures that Sp’s criticality and flow values
have been computed before S;’s.)

11



Algorithm 2 provides an overview of single layer CFC computation. The maximum
flow algorithm ComputeMaxFlow() and critical flow centrality algorithm Compute CFC()
are both exactly as described in [53]. The sole difference from that previous work is
the requirement to load propagated demand and criticality values into the model before
running those algorithms.

Function ComputeSingleSystemCFC(S;)
PropagateValues(S;)
ComputeMaxFlow(S;)
ComputeCFC(S;)
Algorithm 2: Computing CFC for a set of interdependent infrastructure systems.

Propagation of criticality and flow values proceeds by examining the set of relevant
interconnection records /R(vy,v2). These records are created by the modeler using the
interactive application to connect vertices in different layers of the interdependent system.
The implementation of the records includes the following details:

4 )

<<struct>>
InterconnectionRecord

Source Network : NetworklD

Source Vertex ID : unsigned int
Destination Network: NetworklD
Destination Network ID: unsigned int
Dependency Function Type: FunctionType

\

If there exists an interconnection record /R(vy € Sy, v» € S;), then there is a physical
(resource) dependency between systems Sy, and S;. Demand and criticality values for v,
must be propagated to v, before the maximum flow and CFC can be computed for S;.
Algorithm 3 gives an overview of this process. Criticality values are copied directly, but
the amount of resource that must be provided by v, to v; is determined by a function. In
this paper, the resulting demand at v is half of the flow at v;.

Function PropagateValues(S;)
foreach interconnection record IR(v1, v,) do
if vo € §;.V then
vy.demand <« CalculateResultingDemand((v1, v7))
v;.criticality «— v .criticality
end
end

Algorithm 3: Propagation of resource demands.

Figure 4 shows water system and electricity system that are interlinked in two locations:
pumps near the source of the water system are fed by electricity nodes labelled A and B.
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A flow solution was first computed for the water system, yielding flows of 6063 litres and
5973 liters at the pumps. The induced demand at nodes A and B of the electricity system
are 3031 and 2986 units. As in the previous work [53], edges and vertices with no flow
are shown in black. The existence of such elements is an artifact of the Edmonds-Karp
algorithm [1, 14] used in this simple instantiation, and one that would be corrected by
using domain-specific methods (e.g., hydraulic simulation [34]).

Figure 5 shows the CFC values for the same interdependent infrastructure system under
the same flow solution. Criticality levels (ranging from 0 to 1) are shown in white font
for the buildings. (Lot criticality is fixed at 0.02, and elided for brevity). The electricity
nodes A and B have inherited criticality values of 0.32 and 0.61 from the corresponding
pump vertices in the water system; they require flow of 3031 and 2986 units, which the
reader can verify by inspection are half of the flow values at the water pump.

WATER ELECTRICITY
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SOURCE
Fig. 4. Flow through an interdependent network. Demand values are in italics while flow
values are in regular font. Pumps in the water network are supplied with electricity by

nodes A and B. Pumps require electricity proportional to half of their water flow. Black
edges/vertices have zero flow.
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0.087
0.32 0.61
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4e-05 3.3e-05

2.9e-05 24e-05

SOURCE

Fig. 5. (Normalized) critical flow centrality, computed from the flows in Figure 4. Demand
values are in italics, CFC values are in regular font, and criticality ratings for buildings are
in white. The electricity nodes that supply the water pumps are given criticality ratings of
0.32 and 0.61 and demands of 3031 and 2986 via Algorithm 3.

While most of the critical demand in the model is for the hospital (criticality=1.0)
and secondary school (criticality=0.6), the pumps create significant critical demand in
otherwise non-critical regions of the model. Figure 5 show that the electricity nodes
supplying the pumps carry 16.7% and 8.7% of the total critical flow in the electricity
network. Needless to say, it would be a poor decision to co-locate electrical assets with
water assets when both are carrying highly critical flow.

Thanks to the propagation of both flow and criticality values from one network to
the next, the criticality of the water pumps is appropriately represented in the criticality
ratings of the electricity system. While the model used in this paper consists of only two
independent systems, it is possible to use the method on interdependent infrastructure
models of arbitrary complexity, provided that the interdependencies create a directed,
acyclic graph.
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3.6 CFC Computation with Time-Varying Demands

The method outlined in [53] provided a means of computing critical flow centrality mea-
sures on a static network with integer-valued demands. The CFC values for a network are
computed from a given network flow, which in turn is generated from a set of demand val-
ues and capacity constraints. CFC measures are therefore based on both network topology
and assignments (see Section 3.2), as opposed to classical centrality measures (e.g., flow
centrality [19]) which are based solely on topology.

Of course, the properties of real-world networks are subject to various forms of
dynamics, including demands that vary over time (e.g., due to daily usage patterns) and
changing capacity constraints (e.g., due to disruption, failures, or component decay).
Additionally, systemic measurement errors or data uncertainty may force modelers to
consider a range of demand values, as opposed to simple integers.

One means accounting for these situations is to think of an assignment of demand,
capacity and criticality values as a sample — each assignment shows one possible state of
the network, and the resulting CFC values are measures of criticality for that given state.
Evaluation of a system’s criticality is performed via a sampling procedure in which multiple
assignments are generated, CFC values are computed, and the results are aggregated to
form an estimate of component criticality across a wide range of system states.

As an alternative to a sampling approach, one could replace the integer-valued demands
with time series. This is the approach pursued in this paper, since the goal of this work is
to support urban planners and municipal engineers in considering the impact of changes
in demand patterns over medium/long time-frames. Each demand node corresponding to
a lot/building receives a time series for each resource; in the current paper, time series are
assumed to give average hourly demands over a 24-hour day. Demand data for different
types of buildings were obtained from several sources (e.g., [6]). Examples of water
demands appear in Figure 6 below:

Laundromat Hospital
e N R
0.08 0.08
0.06 0.06
[} [}
c_:v’ 0.04 % 0.04
> >
0.02 0.02
0.00 0.00
00:00 04:00 08:00 12:00 16:00 20:00 24:00 00:00 04:00 08:00 12:00 16:00 20:00 24:00
L Time ) \ Time )

Fig. 6. Hourly time series showing water demands from a laundromat and hospital over
an average day. The time series have been normalized to create a probability distribution.
For use in the CFC method, these distributions are scaled by average water usage per day.
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More precisely, each building/lot in the model is assigned: (1) atime series representing
hourly demand for water; (2) a time series representing hourly demand for electricity, and;
(3) a criticality rating in the interval [0, 1]. Time series data is assigned to buildings
according to type (e.g., secondary school, restaurant), while lots are assigned time series
drawn from a library of typical residential demand curves. For simplicity, criticality
ratings and vertex/edge capacities are assumed to be static, although they could easily be
represented with their own time series.

CFC values are computed for each time step ¢ € [1,T] by loading the relevant time
series data for ¢ and executing Algorithm 1. An overview of the process is provided in
Algorithm 4:

Function ComputeCriticaltyForTimeSeries(G)
foreacht € [1,7] do
LoadDemands(G, t)
ComputelnterdependentCFC(G)
end
Algorithm 4: Computing CFC on a system-of-systems with time-varying demands.

Upon termination of this procedure, each node and edge in the interdependent system
has a set of CFC values — one for each time step — that can be used in statistical analysis.

4 Evaluation

Figure 7 shows a graph of critical flow centrality (“CFC") [53] values for the water
network’s edges over the full 24-hour cycle:
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Fig. 7. CFC values for each edge in the water network.
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The edge with a constant criticality rating of 1 is the lone edge incident to the
source/reservoir. In general, the edges with significant criticality values tend to remain
critical throughout the 24-hour cycle, with interesting behaviour happening during the
middle of the day. Low criticality nodes become more critical during mid-day, when
significant water demand begins to push capacity constraints.

In contrast, the edges of the electricity network display a more stable distribution. In
Figure 8, one can clearly see that there are fewer intersections between lines in the plot of
electricity edge criticality values. The edge to the single source node again has a constant
criticality rating of 1, and the fluctuation in criticality values of other major edges is much
less pronounced. This is likely a consequence of the fact that the demand on the electricity
network does not tend to push capacity constraints as much as the demand on the water
network.

1

CFC
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TIME

Fig. 8. CFC values for each edge in the electricity network.

To recap, Algorithm 4 results in a set of CFC values CF C;(c), where ¢ is a timestep and
¢ is a component. For instance, the output for the water system edges can be represented
as a matrix CFC¢ in which rows are timesteps and columns are edges:

water
CFC1(€1) CFC1(€2) CFC1(63) NN CFC1(€|E|)
. CFCy(e1) CFCy(ez) CFCy(e3) ... CFGCyeg))
CFC¢ 10 = , . . . :
CFCk(el) CFCk(ez) CFCk(63) PN CFCk(e|E|)

Given a matrix of this sort, what method should be used to aggregate the information in
the matrix into a single component importance measure for each edge??
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The most intuitive approach to ranking the components is to: (1) take the sample mean
of each column, and; (2) rank columns in descending order. This would be an appropriate
strategy if each row of the matrix was a sample from the space of assignments (i.e., in a
Monte Carlo approach) at a given time . However, the rows in the matrix are assessments
of the system at different points in time. The use of descriptive statistical measures (e.g.,
average, variance) elides system dynamics. The same is true of various other methods
(e.g., spectral analysis) that might be employed to analyze the matrix.

The choice of ranking approach is dependent upon the purpose of analysis. Consider
a long-term (e.g., multi-year) analysis that attempts to study the distribution of critical
flow patterns in response to changing population densities and land-use patterns. In such
a setting, the limiting behaviour of the system is of interest.

Figure 9 displays a situation in which criticality curves for two different components
have the same integral but completely different trends over time. For a long-term (decadal)
analysis of infrastructure criticality, the component with the orange criticality curve is
clearly the more important of the two. In this setting, some form of trend-based, multi-
variable time series analysis is required.
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Fig. 9. Two components with similar integrals but different long term behavior.

Since the time series in this paper represent average demands in a daily cycle, com-
ponents are ranked according to the integral of their CFC curve. Taking the water
network edges as an example, a cubic spline is defined on the set of sample points
{(CFCi(e), CFCy(e),...,CFCy(e)} corresponding to edge e € E. An integral is calcu-
lated from the cubic spline (as shown in Figure 10) and normalized by the maximum
possible area MAX_CFC - (k — 1) = 1-23 = 23 (recall that CFC values are already
normalized, so that the maximum CFC at any time step is 1). The result is then assigned to
the edge e as its global CFC value CF C(e) for the entire time series. The set of all water
network edges E is then ranked by sorting the edges according to their CFCg values.
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Fig. 10. Computing the global CFC value for a given component e. A cubic spline
is overlaid on the CFC values for e. The integral of the spline (blue) is computed and
normalized by the total area.

The same process is repeated for vertices, and for the other networks in the system-of-
systems. Because of the way in which the critical flow centrality metric is defined, values
for edges and vertices are commensurate, allowing a global ranking of all components in
the interdependent system.

5 Reliability

5.1 Edge Reliability

In the previous work [53], critical flow complexity values were combined with edge
reliability to define a composite measure of component importance. A reliability function
r: E — [0, 1] was introduced to assign edges ¢ € F a reliability rating r(e) € [0, 1]. The
Unreliable Critical Flow (“UCF") component importance measure was introduced:

CUCF () = CF (e)(1 = r(e))

Note that UCF values lie in the range [0, 1], since the normalized critical flow centrality
C'FC€(e) and reliability rating r(e) are both in [0, 1].

The use of the UCF measure on interdependent networks with time-varying demands
is a straightforward extension of the approach for the CFC. The most notable change is that
the reliability rating for a network component e is no longer a single value r(e) € [0, 1], but
rather a time series R, = {re1, ¥e2, - - ., Tek ;- This allows the modeler to represent different
processes (e.g., the deterioration of components over long time periods, or increased risk
of damage due to temperature variations within a daily cycle.)
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The UCF measures are computed for each timestep ¢ using the CFC values and
reliability ratings at ¢. (Note that these values are scaled at ¢ by dividing each one by
the maximum UCF measure for that timestep.) The end result is a matrix in which entry
(i, j) gives the UCF values for each edge e; at timestep i. As in the case of the CFC, a
cubic spline is overlaid on the values for each edge, creating an unreliability curve. After
computing the integral and dividing it by the maximum possible area, the global UCF
value for edge e [denoted UCFg(e)] is computed.

Geospatial dependencies between infrastructure components can be introduced into
edge reliability analysis in a number of ways. For example, edges that are co-located (e.g.,
a water pipe and electricity pipe sharing the same service tunnel) could be forced to share
the same reliability rating. Co-located components could also be assigned a reliability
penalty that reflects the fact that component failures are no longer completely independent.

5.2 Failure Analysis

CFC measures can also be used with another form of reliability analysis in which com-
ponents are deliberately failed or degraded (e.g., by reducing their capacity) in order to
assess the effects on the system as a whole. Recall from the previous work [53] that the
critical flow in network G given assignment A is the sum of flows reaching the demand
nodes, weighted by criticality:

FSG) = ) fald)e(d)

dEVD

The normalized CFC for component e is a measure of the proportion of critical flow
passing through e. However, the CFC is relative to an assignment, which includes demand
values for all of the demand nodes. A given component e may have a high CFC value
under a given assignment, but it may be the case that if e suffers a (partial) failure there
are other routes through which flow may travel in order to satisfy critical demand. Figure
11 provides an illustration of this situation.

A. cr(dh)=0.1 cr(d2)=0.8 B . cr(dh)=0.1 cr(d2)=0.8

Fig. 11. Two networks with different behaviour in edge failure scenarios. Network A
carries most of its critical flow through the path {e}, e, e3}. In case of edge failure, no
alternative paths are available. Network B has a fallback route in case edge e3 fails.
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As aresult, this form of failure analysis provides some indication of whether there are
fallback routes that can supply critical flow in the event that a component e fails. If the
failure of e consistently results in reduced critical flow across the entire time series, one
can assume that e is even more critical than the CFC measure alone might suggest. If large
CFC values are correlated with reduced critical flow, then the components that bear the
most critical load in the network lack fallbacks.

As a demonstration of the method, Algorithm 5 shows a high-level view of a procedure
in which capacities of edges in a single infrastructure system are degraded one-at-a-time.
For each time t < T, appropriate demands and criticality values are loaded into the graph.
Then each edge e € E is considered in order, degrading its capacity and performing the
CFC computation on the altered network. The critical flow is then used to create a loss
measure that indicates the amount of critical flow that is lost when edge e is degraded.
The failure loss F'L,(e) for edge e € E at time ¢ is:

2devy, Jald t)e, (d, 1)
ZdGVD 6(d’ t)cr(d, t)
where (recalling Section 3.2) Vp is the set of demand nodes in G, §(d, ) is the demand at

time 7 from demand node d, fa(d,1) is the actual flow to d at time ¢, and ¢,(d,t) € [0, 1]
is the criticality rating for d at ¢.

FL(e)=1-

Function PerformEdgeFailureAnalysis(S)

foreacht € [1,7] do

LoadDemands(S, t)

foreach e € E do
Var originalCapacity « e.capacity
e.capacity «— Degrade(e.capacity)
ComputeSingleSystemCFC(S)
ComputeFailureLoss(S)
e.capacity « originalCapacity

end

end
Algorithm 5: Edge failure analysis on network S with time-varying demands.

The edge failure mechanism was tested on the network from Figure 4 by degrading
the capacity of each edge e to 0. (Demands and criticality ratings were the same as in
previous sections.) The failure loss FL;(e) was computed for each edge e at each time
t € [0,23] and averaged over the 24 hour cycle to create an aggregate failure loss metric.
The CFC values for each edge e were likewise averaged over the same time frame.

Figure 12 shows both the averaged CFC and averaged FL metrics for the edges of the
water network. Two facts are immediately obvious. First, the vast majority of edges have
negligible average CFC and FL values. These are typically low-capacity feeds from a
residential street’s water pipe to an individual lot/parcel.
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Fig. 12. Averaged failure loss (FL) and averaged critical flow centrality (CFC) on the
edges of the water network in Figure 4, computed over a 24-hour period. The majority of
edges (e.g., those that feed individual lots) have negligible FL and CFC values.

Second, a significant percentage of of those edges with high CFC ratings also have
low FL values. Although these pipe segments carry a sizable amount of critical flow,
alternative routes are available in case they should suffer individual failures. Examples
include the pipes that define the loops around residential blocks; these loops are resistant
to individual failure, since there are two paths from the entry point of the loop to any
lot/parcel.

Of course, the main pipes from the reservoir have no backups, as demonstrated by the
overlap of FL and CFC values for edge 320. In general, the covariance of FL and CFC is
mildly significant but also somewhat misleading as a summary statistic. With a different
network topology that included multiple sources and alternative paths, one would expect
less correlation between the FL and CFC values, making the easily computable CFC a
poor predictor of the consequences of edge failures.

5.3 Limitations and Assumptions

The edge failure analysis presented above was subject to several simplifying assumptions.
First, geospatial dependencies were not included in the analysis. This decision was made
in the interests of brevity, but a thorough treatment of edge failure in an interdependent
network would study simultaneous failure of co-located components.
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Second, the definition of the FL metric uses the aggregate of all demands at the
network’s demand nodes as the normalizing factor. This is appropriate for a network
where all demands are satisfied in the baseline state, but it will overestimate losses in
networks which exhibit unsatisfied demand. For the scenario under study (i.e., daily
critical flow distribution in a neighborhood), this assumption is reasonable.

Third, physical (resource) dependencies were not accounted for. The failure analysis
method focused on a single infrastructure system (e.g., a water network). However, the
failure/degradation of electrical components would cascade into the water network, since
the latter requires electricity to operate water pumps.

The work in this paper (as well as its predecessor [53]) assumes that the modeling
and solution methods used in each layer are not necessarily commensurate. That is, the
electricity layer may be modeled with one set of domain-specific techniques, while the
water layer may be modeled with another. All that is required is for each layer to provide
flow computation and a basic network topology. This decision, while realistic from a
software engineering perspective, precludes the use of standard approaches to modeling
cascading failures.

To model physical dependencies and cascading failure in such a setting requires the
use of additional machinery. Component failure in the electricity system could result in
reduced power levels at the water pumps; this, in turn, could alter water distribution flows,
result in reduced electricity demand from other components of the water system — thereby
changing demand patterns for the electricity system. Thus, the result is an equilibrium
problem in which changes in one layer percolate through other layers, and then back again.
Solving such a problem is well beyond the scope of this paper.

6 Conclusion

This paper extended previous work [53] on critical flow centrality (“CFC") from indepen-
dent networks with integer-valued demands to interdependent networks with time-varying
demands. It provided a mechanism for representing dependencies between layers of
a complex infrastructure network, as well as a discussion of how CFC values may be
computed over time series. Lastly, the paper discussed how CFC computations may be
integrated with two forms of reliability analysis — edge reliability metrics and component
failure/degradation models.

Connections between individual infrastructure systems are modeled through the use
of geospatial and physical (i.e., resource-based) dependencies. Both types of dependency
can be used to define a graph G in which nodes are individual infrastructure systems and
edges appear when dependencies are present. In the case of physical dependencies, it was
assumed that G is a directed, acyclic graph that can be ordered with a topological sort.

Similarly, the time series computation presented in the paper assumed that the time-
varying demands represented average values in a 24-hour cycle. This decision simplified
the analysis, and allowed the use of integrals to compute a global CFC value for the
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entire cycle. For the study of trends in infrastructure systems over time, the integral-
based aggregation would need to be supplanted by trend-based, multi-variable time series
analysis.

The instantiation of the CFC computation presented in both the current and previous
papers are suitable for medium/long time horizons. The main culprit is the use of integer-
valued representations for demands and capacity constraints. This decision, which was
made in order to simplify the problem and avoid numerical instability, means that short
term dynamics are difficult to represent. This precludes forms of analysis in which the
rates of change (e.g., of flow) on system components may be analyzed. The use of floating
point representations and domain-specific flow computation methods (e.g., simulation)
will avoid this restriction.

Many avenues of future work remain, the most important of which is removing the
restriction of G to directed, acyclic graphs. To do so invites consideration of equilibrium
concerns — changes in one network cause changes in others, altering flow distributions
and demand patterns in complex ways. Providing solutions for this type of problem is well
outside the scope of the present paper.

Even with this restriction in place, there are still additional issues to be resolved.
First, a more realistic flow mechanism (e.g., domain-specific methods) should replace the
generic Edmonds-Karp algorithm that favors shortest paths (thereby introducing artifacts
into the flow solution). Second, geospatial dependencies should be introduced into both
the edge reliability and component failure analyses. Additional avenues of future research
were hinted at throughout the paper.
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