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Abstract
This paper describes a novel method for allowing urban planners and municipal
engineers to identify critical components of interdependent infrastructure networks
whose attributes vary over time. The method is based on critical flow analysis,
wherein system components are ranked by their role in facilitating the flow of
resources to critical locations. The intent of the method is to support decision
making by providing a means by which stakeholders can reason about the way in
which changes in supply, demand, or network capacity can alter the distribution of
critical flows within an urban environment. Individual infrastructure systems are
modeled as networks that can be linked to one another by physical and geospatial
dependencies. A simple instantiation of the method is presented and evaluated
on a district-scale model of a city that contains water and electricity networks.
The paper also discusses two forms of reliability analysis based on critical flows:
a composite measure incorporating edge reliability, and a variation on standard
component failure/degradation analysis.

Keywords: Component importance measures, Centrality measures, Complex
systems, Network science, Infrastructure reliability

1. Introduction1

This paper presents a novel method for identifying critical components in2

interdependent, urban infrastructure systems. The ultimate goal of the research3

is to develop a decision support tool that allows urban planners and municipal4

engineers to reason about risks introduced by interventions (e.g., zoning changes,5

maintenance activities). The paper demonstrates that standard network analysis6

techniques can be combined with criticality and reliability metrics in order to7

define a composite method that provides useful information for decision makers.8
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Although themethod described in this work can be used in a variety of contexts,9

the paper focuses on urban infrastructure systems (excluding transport). Residents10

of cities depend on infrastructure systems to deliver not only physical resources11

such as water and gas, but also a range of social goods ranging from education12

to healthcare. Disruptions in the delivery of resources and/or services can have13

extremely deleterious consequences, particularly for critical locations such as14

hospitals. Methods for identifying the infrastructure components that supply15

critical locations with resources could be used in several activities, including16

maintenance scheduling, disaster recovery, and zoning.17

Infrastructure systems can be disrupted in numerous ways, including deliberate18

attacks, component failures, and natural disasters. Much of the existing research19

on critical infrastructure protection, for instance, has focused on protecting infras-20

tructures against damage due to extreme weather or deliberate attacks [1, 2, 3].21

Component failure has been studied extensively in the field of reliability engineer-22

ing (e.g., [4]) and in the various engineering disciplines (e.g., water [5], drainage23

[6], electricity [7], telecommunications [8], and transportation [9]). Disruption of24

networks has also been considered in operations research (e.g., [10]), computer25

science (e.g., [11, 12]), network reliability (e.g., [13, 14]), graph theory (e.g.,26

[15, 16]), and network science (e.g., [17]).27

While the method presented in this paper can represent disruptions, it was28

designed to accommodate a broader set of issues. In addition to severe, short29

term events (e.g., natural disasters), infrastructure systems are influenced by a30

variety of factors, including: (1) population growth, which typically results in31

increased demands; (2) component degradation, which can introduce new capacity32

constraints; (3) maintenance activities, which can shift flows of resources from33

one route to another, and; (4) planning interventions (e.g., the development of new34

residential subdivisions), which can have effects both on system topology and on35

demand patterns.36

In order to accommodate this diverse set of scenarios, the method includes37

three major features that, in combination, distinguish it from prior art: (1) lo-38

cations are annotated with criticality ratings, allowing distinctions to be drawn39

between different types of facility; (2) infrastructure systems may be connected40

via geospatial and physical dependencies; (3) system attributes (e.g., demand for41

resources) are modeled as time series, permitting the user to reason about the42

impacts of interventions or disruptions over different time scales.43

The structure of this paper is as follows. Section 2 provides useful background44

information, while Section 3 introduces the methodology used in this paper. Sec-45

tion 4 provides an evaluation of the methodology on a district-scale model of a46
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city. Section 5 discusses two forms of reliability analysis that can be combined47

with critical flow measures. The paper closes with suggestions for future research.48

2. Background49

The method in this paper can be viewed as a combination of techniques from50

network science and critical infrastructure protection. The fundamental building51

block is a component importance measure (“CIM") (e.g,. [18], [19], [20]) that52

estimates the degree to which a given component participates in the delivery of53

resources to critical locations. Before discussing the method in detail, a quick54

discussion of relevant background material is required.55

2.1. Network Science and Centrality Measures56

Networks are a common choice of modeling mechanism in many fields, and57

critical infrastructure protection is no exception (see [1]). For example, many ap-58

proaches to infrastructure vulnerability and resilience make use of techniques from59

network science. From the perspective of the current paper, the most important of60

these techniques are the centrality measures, which are used to identify the most61

central components in a network (see [21, 22, 23]).62

Numerous centrality measures exist [24], the most intuitive of which are: (1)63

nearness measures, which determine a given component’s centrality by means64

of its proximity to other components, and; (2) betweenness measures, which65

deem components to be central to the extent to which they stand between other66

components as intermediaries. These categories contain measures that largely67

focus on network topology; in contrast, dynamical measures take into account68

various dynamical processes taking place on the network.69

The progenitor of themethod used in this paper is flow centrality [25]. Consider70

a simple network with nodes + and links � . A node E is considered to be between71

other nodes D and F to the extent that the maximum flow between D and F depends72

on E. Nodes are deemed central to the extent that they facilitate maximum flow.73

Stated formally, for D, E, F ∈ + , let <D,F be the maximum flow between D and
F, and let<D,F (E) be the maximum flow between D and F that depends on E. Then
the flow centrality (“FC") of a node E ∈ + is the degree to which the maximum
flow between all unordered pairs of nodes depends on E:

�� (E) =
∑
D≠F≠E

<D,F (E) (1)
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2.2. Interdependent Infrastructures74

Infrastructure systems are typically coupled to the extent that the failure of75

components in one system can cause failures in connected systems [26]. These76

interdependent systems are typically more fragile than solitary systems [27], with77

additional failure modes (e.g., cascading failures [28]) that can be quite complex.78

For example, water distribution systems impose much greater cascading damage79

on other systems than they receive in return [29], and they seem to display a greater80

propensity to initiate cascading failure in other systems [30].81

Various research communities have advocated an integrated view of infras-82

tructure systems, and a growing body of work is available on interdependencies83

(e.g., [31, 32]). For instance, homeland security initiatives following the Septem-84

ber 11th terrorist attacks in the United States spurred numerous efforts addressing85

infrastructure interdependencies (e.g., [33]). Overviews of techniques for the mod-86

eling and simulating interdependent critical infrastructure systems may be found87

in several places, including [34].88

2.3. Modeling Interdependent Infrastructures with Networks89

One approach to analyzing interdependent infrastructure systems involvesmod-90

eling them as interdependent networks [32]. Interdependent (or multilayer [35])91

networks have received increasing amounts of attention of late, particularly from92

the physics and network science communities. A recent survey paper can be found93

in [36], while books on the topic are readily available (e.g., [37, 38, 32, 39, 40, 35]).94

To be precise, a network � is dependent on network � if the state of � can95

influence the state of � [41] (see also [42]). Dependencies can be classified as96

follows [30]:197

1. Physical dependencies, in which the state of � is affected by the material98

outputs/flows of �99

2. Geospatial dependencies, in which certain components of � and � are in100

such close spatial proximity such that local events can affect both networks;101

3. Informational dependencies, in which � and � are connected by informa-102

tion and communications technology (“ICT");103

4. Social dependencies, in which � affects � along social dimensions;104

5. Procedural dependencies, where � affects � on the basis of organizational105

or regulatory structures, and;106

1Alternative classifications appear in [43, 44].

4



6. Financial dependencies, wheremarket conditions, financial crises and other107

economic events allow one network to affect another.108

There are many ways to represent these dependencies in network models, a dis-109

cussion of which is beyond the scope of the paper.110

2.4. Finding Critical Components in Interdependent Networks111

Numerous researchers have proposed methods for identifying critical compo-112

nents in interdependent networks. Typical examples are described below:113

• Apostolakis and Lemon [45] evaluate the vulnerability of geospatially inter-114

dependent infrastructure systems (gas, water, electric) by identifying critical115

locations— geographical points that are susceptible to attack. Each system116

is represented as a directed network in which vertices can represent not just117

junctions but also physical features (e.g., manhole covers). Co-location of118

assets (e.g., shared service tunnels) is modeled by allowing vertices from119

one graph to appear in another. (Physical dependencies, such as the use of120

electricity by the water system, are not modeled).121

In their approach, a set of attack scenarios is identified and the networks122

are analyzed in order to identify minimal cut sets (see [7]). The resulting123

vulnerabilities are prioritized by: (1) the degree to which the targets are124

accessible to the attacker (i.e., susceptibility), and; (2) the value of the125

targets from the standpoint of the decision-maker, calculated by summing126

their expected disutilities. The susceptibility and value are combined to127

yield a vulnerability category — one of five colors ranging from green to128

red.129

• Lee et al. [43] provide a method for prioritizing service restoration activities130

in an interdependent system-of-systems. Each independent system is repre-131

sented as a flow network that carries commodities, composed of edges and132

vertices that may both have capacity constraints. Dependencies are modeled133

as additional constraints in a mixed integer network flow model. In addition134

to geospatial and physical dependencies, they allow shared dependencies135

(i.e., for multi-commodity flow networks) and exclusive-or dependencies136

(i.e., to allow flow on a multi-commodity network to be restricted to one137

type of commodity at a time).138

• Duenas-Osorio et al. [46] study the interdependency of electricity and139

water systems from a topological standpoint. Both geospatial and physical140
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dependencies are modeled, with the water system requiring electricity for141

pumps, lift stations, and control units. Conditional probability distributions142

are used to model potential failures of water system components given143

failure of electricity system components. Three types of vertex removal144

strategies are used to model disruptions; for each such disruption, a set of145

metrics are calculated: (1) nodal degree; (2) characteristic path length [47];146

(3) clustering coefficient [48], and; redundancy ratio. Flows of water or147

electricity are not modeled.148

• Buldyrev et al. [26] examine the impact of electricity system disruptions on149

the internet. Geospatial dependencies aremodeled by assigning each internet150

server to the closest power station. Disruptions are initiated by removing151

power stations and tracking resulting nodal failures — in particular, a node152

E is considered to be failed if: (1) all of E’s neighboring nodes are failed, or;153

(2) the geospatially coupled node in the electricity network is failed. Nodes154

are ranked according to the consequences of removal. The authors argue that155

disruption of a small number of nodes in the electricity system is sufficient156

to provide cascading failures in the internet network.157

• Galvan and Agarwal [49] perform vulnerability analysis on interdependent158

infrastructures by examining the impact of disruptions. Each infrastructure159

is represented as a flow network with a unique resource type. In each160

iteration of the analysis, a single node is selected for failure (disruption).161

After recomputing the flow solution, the algorithm identifies every node that162

is in violation of capacity constraints. These latter nodes are then disabled163

and the process repeats itself until no more failures occur.164

The authors introduce a new vulnerability metric -1, defined as the fraction165

of nodes that fail after the first step of the cascading failure process. After166

using -1 to rank nodes, they compare the results against traditional centrality167

measures (i.e., nodal degree, the flow value for the non-disrupted solution,168

and network efficiency).169

• Svendsen and Wolthusen examine interdependent critical infrastructures170

in a series of papers [50, 51, 52, 53]. Their models represent multiple171

concurrent types of dependencies, categorized at a high level into storable172

and non-storable types. Each vertex E in a network can act as a producer or173

consumer of up to < different resources, and for each such resource E has174

a corresponding buffer. The authors investigate numerous issues, including175

the behaviour of systems with cyclic interdependencies.176
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3. Methodology177

The goal of this work is to explore means by which urban planners, municipal178

engineers and other decision makers can identify critical components of interde-179

pendent infrastructure networks. When embodied in software, such methods can180

be used to support decision makers engaged in maintenance scheduling, zoning,181

capacity planning, or other activities related to municipal infrastructure.182

3.1. Overview183

The paper provides an example of such amethod, based on a centrality measure184

that combines classical flow centrality [25] with concepts from critical infrastruc-185

ture systems (e.g., [45]). The perspective in the paper is resource-based, focusing186

on the routes by which resources are delivered to consumers. Components are187

deemed critical to the extent that they are involved in facilitating the flow of188

resources to critical locations.189

Computation of the centrality measure, critical flow centrality (“CFC"), can190

be accomplished in several ways (see [54]). In the current paper, a discrete-valued191

approach is taken in which: (1) an infrastructure system is represented as a flow-192

network; (2) demands, capacities, and supply limits are given as integers, and;193

(3) each demand node in the network is assigned a real-valued criticality rating.194

Network flows are simulated with a standard maximum flow algorithm; once a195

flow has been defined, a search-based algorithm computes expected contribution196

of each component to the critical flow within the network.197

Since infrastructure networks are not independent of each other, physical and198

geospatial dependencies may be introduced between individual infrastructures.199

The most important of these for the present paper are physical dependencies in200

which resources provided by one system (e.g., electricity) are used by another201

system (e.g., water pumps). One of the main contributions of the paper is to show202

how CFC values can be propagated from one infrastructure system to another.203

The method is demonstrated by applying it to a district-level model of a city.204

Each lot has a type, a criticality rating, and a set of demand curves (time series) for205

resources. For reasons of brevity, only two infrastructure systems (electricity and206

water) are shown. The simple method provided in this paper also assumes that the207

physical dependencies between individual infrastructures are acyclic.208

The main thrust of the demonstration is to show that: (1) the computation209

of CFC values can be performed efficiently, enabling their use in interactive GIS210

applications; (2) CFC values can correctly propagate between system models,211
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and; (3) CFC computations can be integrated with standard reliability measures to212

provide a composite view of a system.213

The CFC measure itself is completely general, requiring only a flow solution214

and a network topology. The method presented in this paper uses the same (dis-215

crete) algorithms to compute values for each individual infrastructure system –216

namely, (1) an integer-valued maximum-flow algorithm to approximate resource217

flowwithin infrastructures, and; (2) a modified graph-search algorithm to compute218

CFC values. These design choices are for ease of explanation, and more sophis-219

ticated, heterogeneous systems can be accommodated. One can model a water220

system using hydraulic techniques [55], for example, coupling it to an electricity221

system that is simulated using its own domain-specific methods. Given a flow so-222

lution and network topology, CFC values can be computed by using Markov-chain223

Monte Carlo or random walks (see [54] for details).224

3.1.1. Integration with GIS225

This work was motivated by the problem of providing adequate decision sup-226

port for urban planning. For instance, densification of urban areas is accompanied227

by greater demand for resources; the increased demand could: (1) violate capacity228

constraints, as in the case of the London sewer systems [56, 57], or; (2) threaten229

the ability of a legacy infrastructure system to reliably deliver services to critical230

locations such as hospitals and transportation hubs. Urban planners could benefit231

from tools that allow them to visualize the impacts of land-use decisions on the232

provision of critical resources and/or services.233

Effective modeling of integrated infrastructure systems requires more than a234

static, single-perspective approach. Management of disruption (and prevention of235

cascading failures) requires an understanding of system dynamics [58]. Further-236

more, any model used to study the disruption of interdependent infrastructures237

needs to support two different perspectives [43]: (1) a ‘system-of-systems’ view238

that focuses on dependencies, and; (2) a traditional view of each individual system239

that is familiar to managers/specialists.240

One means of providing infrastructure models that support multiple perspec-241

tives is through the use of geographical information systems (“GIS") software.242

In fact, the critical information protection community has begun to use GIS as a243

platform for resilience and vulnerability analysis [59]. For this reason, the method244

described in this paper was explicitly designed for integration within GIS software.245
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3.1.2. Data Sources246

Two major challenges arise when data sources are considered. First, data on247

infrastructure systems does not always exist, and particularly not in a form that248

permits detailed analysis of interdependencies. Second, infrastructure systems249

in many countries (e.g., the United States power grid) are not under the control250

of a single entity [58], making the data collection process difficult. The lack of251

information on infrastructure assets has motivated some researchers to develop252

techniques for inferring asset locations from proxy data sources (e.g., [60, 61]).253

The model used in this paper is a mixture of synthetic and empirical com-254

ponents. The basic topology (i.e., road and parcel structure) was taken from255

downtown Toronto, albeit the boundaries were simplified in order to make dia-256

grams feasible and to convey the basic method clearly. Resource demand profiles257

(e.g., hourly water consumption for hospitals) were taken from empirical studies258

and from municipal utilities.259

3.1.3. Implementation260

The sample method was implemented directly in C++ and OpenGL. Road and261

building information was obtained from OpenStreetMaps, imported into ESRI262

CityEngine, and edited manually to remove artifacts. Custom python scripts were263

used to export the road network topology, block/lot geometry, and building shapes264

from CityEngine to Extensible Markup Language (“XML") files. Infrastructure265

systemswere createdmanually using the application’s editing functionality. Lastly,266

the diagrams shown in this paper were generated by exporting model geometry267

directly to Scalable Vector Graphics (“SVG") format.268

3.2. Modeling Approach269

This section discusses the building blocks of the simplified model, includ-270

ing: (1) the network representation; (2) time series representation of supply and271

demand; (3) criticality ratings, and; (4) inter-system dependencies.272

3.3. Network Representation273

An individual infrastructure system is modeled as a weighted, capacitated, flow274

network � = 〈+, �〉 where � is a set of nodes, � ⊆ + ×+ is a set of edges:275

• each node E ∈ �.+ has Euclidean coordinate ®F(E) = (EG , EH, EI) ∈ R3, as276

well as an (optional) capacity constraint 2(E) ∈ N.277

• each edge 4 = (E8, E 9 ) ∈ �.� has a capacity 2(4) ∈ N, a flow 5 (4) ∈ N,278

and a length ; (4) ∈ R defined as ‖ ®F(E8) − ®F(E 9 )‖2.279

9



Note that each network � is a multi-graph in which multiple edges may connect a280

given pair of nodes, allowing for redundant (fallback) connections. Bi-directional281

relationships, cycles, and self-loops are all permitted.282

A network � contains both source (supply) and sink (demand) nodes. The283

set of source nodes is +( = {B1, B2, . . . , B?} ⊆ + , and the set of demand nodes284

is +� = {31, 32, . . . 3: } ∈ + . All other nodes are called transmission nodes.285

Multi-functional nodes are supported using a standard maximum flow reduction286

(as described in Section 3.8.1).287

A flow on� is a real-valued function 5 : � → R on�’s edges that obeys three288

flow properties:289

1. Capacity Constraints: for all 4 = (E8, E 9 ) ∈ � , we have 5 (4) ≤ 2(4).290

2. SkewSymmetry: for all 4 = (E8, E 9 ) ∈ � , we have 5 ((E8, E 9 )) = − 5 ((E 9 , E8)).291

3. Flow Conservation: for all transmission nodes EC ∈ + − (+� ∪+(), we have292 ∑
E∈+ 5 ((EC , E)) = 0.293

Each network � supports a single type of resource/commodity, unlike the multi-294

commodity approach in [52]. The value of a flow is defined as the flow exiting295

the source nodes: | 5 | = ∑
E∈+

∑
B∈( 5 (B, E).296

3.4. Supply Constraints and Demand Distributions297

Supply constraints and resource demands are represented as discrete, integer-298

valued time series (see [62]). (While capacities can also be represented as time299

series, the demonstration assumes node and edge capacities are static.) For simplic-300

ity, each time series is assumed to be regularly sampled at times C8 ∈ ) = [0,∞].301

They can be interpreted as the output of functions:302

• Each supply node E ∈ +( may be assigned an optional supply constraint303

function 5 BE (C) : ) → N+ that gives the maximum amount of resource that304

may be supplied from E at time C.305

• Each demand node 3 ∈ +� has a mandatory demand function X3 (C) : ) →306

N+ that gives the amount of flow required by node 3 at time C.307

An assignment to a network involves specifying functions (time series) for all rele-308

vant nodes. Computations on the network (e.g., network flow solutions, criticality309

measures) are performed for each time C8 ∈ ) . Values from previous time steps310

C: may be used as input for computing values in the current time step C8 (where311

C: < C8). This permits the method to represent delays in resource utilization.312
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3.5. Criticality Ratings313

A criticality function 2A : +� → Rmaps demand nodes 3 ∈ +� to a criticality314

rating 2A (3). Although it is possible to use binary (e.g., critical, non-critical) or315

categorical (e.g., low, medium, high) representations, this paper focuses on the316

continuous variant in which criticality ratings take on values between 0 and 1.317

3.6. Interdependencies318

A system-of-systems (“SoS") model consists of a set of : infrastructure systems319

S = {(1, (2, . . . , (: }. As shown in Figure 1, two types of dependencies are320

permitted between pairs of elements from S:321

1. geospatial dependencies, which arise when elements from network � are322

co-located with those from network �.323

2. physical dependencies, wherein elements in network � require resources324

flowing through network �.325

d3

n6 n5

n2

A: S1

n3S2

n1

d1

n4

n7

d2

n8

d7

n4

n7

n2

B:

S1
n6

n1

d3

n5

n9

d6

n8

d1

n3 d2

d5

d4

colocation

colocation

colocation

colocation

physical

physical

colocation

colocation

Fig. 1. Two independent infrastructure systems (�) and (�), linked by geospatial and physical
(e.g., flow-related) dependencies.

Dependencies are represented as interlinks between individual infrastructure326

networks [35]. In contrast to [45], nodes from one network (8 do not appear327

directly in another network ( 9 . This design choice makes it easier to integrate328

disparate modeling methods for each individual infrastructure system (see [63]).329
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Interlinks representing physical dependencies are implemented with the use of330

interconnection records. Referring toFigure 2, let (1 represent awater distribution331

system, and let (2 represent an electricity system. A dependency between water332

node E1 ∈ (1 and electricity node E2 ∈ (2 is represented by an interconnection333

record �'(E1, E2). The amount of resource ' demanded of (2 by E1 (e.g., the334

amount of electricity required to operate a given water pump) is given by a function335

5 ' : (1.+ → R. For instance, a pump at E1 might demand a constant amount of336

electricity per unit time, or it may require power proportional to the flow 5 (E1)337

through E1 (e.g., 5 ' (E) = 2 5 (E)). Delays can be accommodated by deferring this338

demand to later time steps.339

Block/Lot

Water

Electricity
Source

Source

Pump Pump

Fig. 2. Infrastructure model with two layers, showing resource flow between water pumps and
electricity nodes.

Dependencies between network elements imply dependencies between sys-340

tems. If an interconnection record exists that maps elements of (1 to elements341

of (2, we say that (1 is physically dependent on (2, represented as (1 → (2.342

Mutual dependency between systems makes the computational task more diffi-343

cult. The methods of Svendsen and Wolthusen (e.g., [52]) accommodate mutual344

dependencies using multi-commodity flows, but this approach does not allow for345

infrastructure-specific network representations and solution methods.346

In this paper, the set of physical (resource) dependencies between systems in347

S is taken to form a directed, acyclic graph (“DAG") G that can be ordered with a348

topological sort (see [64]). In contrast, geospatial dependencies are not restricted349

in such a fashion.350
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3.7. Critical Flow Centrality351

The Critical Flow Centrality (“CFC") measure reflects the degree to which a
given component facilitiates the flow of resources to critical locations. Recall that
the flow in network � (given assignment �) is the aggregate of all flows reaching
the demand nodes:

�� (�) =
∑
3∈�

5� (3) (2)

The critical flow in network � given assignment � is the set of flows reaching the
demand nodes, weighted by criticality:

��� (�) =
∑
3∈�

5� (3)2A (3) (3)

A component 2 (i.e., node or edge) is deemed to be important to the extent that
it carries critical flow. Let 5� (2, 3) be the flow that reaches 3 ∈ � from 2 given
assignment �, and let � [ 5� (2, 3)] be its expectation. Then the critical flow
centrality (“CFC") of component 2 under assignment � is:

��� (2) =
∑
3∈+�

2A (3)� [ 5� (2, 3)]

This quantity may be normalized by the critical flow ��
�
(�):

�′�� (2) = �
�� (2)
��
�
(�)

=

∑
3∈� 2A (3)� [ 5� (2, 3)]∑

3∈� 2A (3) 5� (3)
(4)

Computing the CFC thus reduces to computing the probability ?(3 |2) that352

a unit of commodity passing through component 2 ends up in demand node 3.353

While there are numerous ways to accomplish this task (e.g., Markov chains), this354

paper uses a discrete, search-based approach.355

For each time step C, a flow solution � (C) is generated represented in a sec-356

ondary graph �′. This is an adjacency-list representation of the stochastic tran-357

sition matrix; every vertex E in �′ maintains an outgoing edge list in which each358

edge is labeled with the probability that a unit of flow travels down that edge.359

Each edge 4 and non-demand node E in�′ have a data structure (i.e.,map) that360

tracks the set of demand nodes reachable from them. Each entry in a map contains361

a tuple (3, %(3 |2<0?)) giving the probability that a unit of flow passing through362

reaches demand node 3 from the map’s parent component 2<0?. The collection of363

all such maps contains the information required to compute Equation 4.364
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The algorithm proceeds by performing a reverse DFS on �′ for each demand365

node 3 ∈ �, computing the probability that each edge or non-demand node sends366

flow to 3. A given node or edge may be visited multiple times in the course of367

the search, requiring care to avoid pushing superfluous probability. (This method368

does not, however, work for graphs �′ that contain cycles).369

Function ComputeProbabilities(G’)
Data: G’, a graph with components (+, �) and absorbing nodes

� ⊆ + .
foreach 3 ∈ � do

ReverseSearch(G’, d)
end

Function ReverseSearch(G’, d)
Data: G’, as above.
Data: d, an absorbing node.
Var excess[] // array of numbers ∈ [0, 1] of size |+ |
Var stack
excess[d.ID] = 1
stack.push(d)
while stack not empty do

Var curNode = stack.pop()
Var amt = excess[curNode.ID] // amount of probability
to push
foreach incoming edge curEdge of curNode do

curEdge.map.IncrementOrAddProbability(d.ID, amt)
excess[curEdge.src.ID] = amt * curEdge.probability
stack.push(curEdge.src)

end
curNode.map.IncrementOrAddProbability(d.ID, amt)
excess[curNode.ID] = 0

end
Algorithm 1: Probability Calculation.

Helper variable 4G24BB is a lookup table containing probability values for each370

node. The IncrementOrAddProbability() function updates the estimate of %(3 |2)371

stored in the map of component 2. The lookup table and variable amt are used to372

avoid problems with overlapping paths.373
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On typical infrastructure networks, Algorithm 1 has time and and space com-374

plexity of$ ( |+ |2). Each map stores up to |� | entries, leading to$ (( |+ | + |� |) |� |)375

in storage space. The time required to perform the search for a given demand376

node is $ ( |+ | + |� |), yielding a total time of $ (( |+ | + |� |) |� |) for the entire377

graph. However, infrastructure networks typically have |+ | ≈ |� | and |� | / 1
2 |+ |,378

yielding time and space complexity of $ ( |+ |2).379

The running time of the entire method is thus dominated by the flow generation380

step, which is typically more expensive than $ ( |+ |2). The current paper used the381

Edmonds-Karp algorithm (see [64]) for simplicity, which is$ ( |+ |2 |� |) on general382

graphs and $ ( |+ |3) on infrastructure networks. Although flows can be generated383

with a variety of techniques (e.g., simulation), the method in Algorithm 1 only384

applies if the transition graph �′ is acyclic. Alternative methods (e.g., simulation,385

Markov chains) can be used if cycles are present.386

3.8. An Algorithm for Interdependent Critical Flow Centrality387

Given a model S with interdependent sub-systems (1, (2, (3, . . . , (=, Algo-388

rithm 1 can be used to compute CFC values for all components in each (8 at each389

time step C. This is not sufficient, however, as physical dependencies must be390

accounted for. Resource demands and criticality ratings must be propagated from391

one sub-system to the other.392

Computing the CFC for the entire model S proceeds by computing the CFC393

for each individual infrastructure system in topological order. Dependencies are394

processed from one system to the next in each iteration, passing demands from395

higher-level layers to lower-level ones. Algorithm2 provides a high level overview:396

Function ComputeInterdependentCFC(G)
Data: G, a graph with nodes +G = ( = {(1, (2, . . . , (: } representing

individual infrastructure systems, and edges �G formed from
physical dependencies between elements of +G .

ConvertNetworkRepresentation(G)
Var list← TopologicalSort(+G)
Var t← 0
foreach (8 ∈ list do

ComputeSingleSystemCFC((8)
end

Algorithm 2: Computing CFC for a set of interdependent infrastructures.
397
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3.8.1. Converting Network Representations398

As a pre-processing step, conversion of network representations is performed399

to transform each individual network (8 into a format compatible with maximum400

flow algorithms.401

1. Nodes with demands are connected to a supersink node (see [64, 65]).402

2. Source nodes are connected to a supersource node.403

3. Nodes in network (1 that require resources from network (2 are represented404

in (2 by corresponding demand nodes.405

In the case of (3), the criticality for the nodes in (1 is only available after the CFC406

for all non-demand nodes has been computed. Thus, the full computation for (1407

must be performed before any computations can be performed for (2. Figure 3408

provides an illustration of network conversion.409
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Fig. 3. Two independent infrastructure systems (1 and (2, transformed into flow networks suitable
for the Edmonds-Karp algorithm. Supersource (‘SS’) and supersink nodes (‘ss’) are added in the
usual manner.
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3.8.2. Computing CFC Values for a Sub-system410

Computation of the CFC for sub-system (8 proceeds in two stages: (1) flow411

values and criticality values are propagated from other layers (ℎ (ℎ < 8) according412

to dependencies, and; (2) the CFC for (8 is computed using the technique discussed413

in Section 3.7. If layer (8 supplies layer (ℎ with resources (e.g., it is an electricity414

network that supplies power to water pumps), then resource demands for (ℎ appear415

in (8’s network as sinks with appropriate demands. Topological ordering ensures416

that (ℎ’s criticality and flow values have been computed before (8’s. Algorithm 3417

provides an overview of single layer CFC computation.418

Function ComputeSingleSystemCFC((8)
PropagateValues((8)
ComputeMaxFlow((8)
ComputeCFC((8)

Algorithm 3: Computing the CFC for a set of interdependent systems.

Propagation of criticality and flow values proceeds by examining the set of419

relevant interconnection records:420

An interconnection record �'(E1, E2) (where E1 ∈ (ℎ, E2 ∈ (8) indicates a421

physical (resource) dependency between systems (ℎ and (8. Demand and criticality422

values for E1 must be propagated to E2 before the maximum flow and CFC can be423

computed for (8.424

Algorithm 4 gives an overview of this process. Criticality values are copied425

directly, but the amount of resource that must be provided by E2 to E1 is determined426

by a function (e.g., the demand induced at E2 is half of the flow at E1).427
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Function PropagateValues((8)
foreach interconnection record �'(E1, E2) do

if E2 ∈ (8 .+ then
E2.demand← CalculateResultingDemand((E1, E2))
E2.criticality← E1.criticality

end
end

Algorithm 4: Propagation of resource demands.

Figure 4 shows a water system and electricity system that are interlinked in428

two locations: pumps near the source of the water system are fed by electricity429

nodes labelled � and �. A flow solution was first computed for the water system,430

yielding flows of 6063 litres and 5973 liters at the pumps. The induced demand431

at nodes � and � of the electricity system are half of the flow – namely, 3031 and432

2986 units.433

Note also that edges and verticeswith no flow are shown in black. The existence434

of such elements is an artifact of the Edmonds-Karp algorithm [65, 64] used in435

this simple instantiation, and one that would be corrected by using domain-specific436

methods (e.g., hydraulic simulation [55]).437

Figure 5 shows the CFC values for the same interdependent infrastructure438

system under the same flow solution. Criticality levels (ranging from 0 to 1) are439

shown in white font for the buildings. (Lot criticality is fixed at 0.02, and elided440

for brevity).441

Thanks to the propagation of both flow and criticality values from one network442

to the next, the criticality of the water pumps is appropriately represented in the443

criticality ratings of the electricity system. The electricity nodes � and � have444

inherited criticality values of 0.32 and 0.61 from the corresponding pump vertices445

in the water system; they require flow of 3031 and 2986 units, which the reader446

can verify by inspection are half of the flow values at the water pump.447
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Fig. 4. Interdependent flows. Demand values are in italics while flow values are in regular
font. Pumps in the water network are supplied with electricity by nodes A and B. Pumps require
electricity proportional to half of their water flow. Black edges/vertices have zero flow.

While most of the critical demand in the model is for the hospital (criti-448

cality=1.0) and secondary school (criticality=0.6), the pumps create significant449

critical demand in otherwise non-critical regions of the model. Figure 5 show450

that the electricity nodes supplying the pumps carry 16.7% and 8.7% of the total451

critical flow in the electricity network. It would be a poor decision to co-locate452

electrical assets with water assets when both are carrying highly critical flow.453
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Fig. 5. (Normalized) critical flow centrality, computed from the flows in Figure 4. Demand values
are in italics, CFC values are in regular font, and criticality ratings for buildings are in white. The
electricity nodes that supply the water pumps are given criticality ratings of 0.32 and 0.61 and
demands of 3031 and 2986 via Algorithm 4.

4. Evaluation454

This section demonstrates the method by means of a district-level model of455

a city containing electricity and water systems. The simplicity of the model is456

for explanatory purposes; it is possible to use the method on models of greater457

complexity, provided that the physical interdependencies create a directed, acyclic458

graph.459

Each building/lot in the model is given: (1) a type (e.g., hotel); (2) a time460

series representing hourly demand for water; (3) a time series representing hourly461

demand for electricity, and; (4) a criticality rating in the interval [0, 1]. Time462
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series are assumed to give average hourly demands over a 24-hour day. However,463

the method is general, and other scenarios could be supported, such as long-term464

(i.e., decadal) investigation of urban growth and its effect on capacity.465

Time series data is assigned to buildings according to type (e.g., secondary466

school, restaurant), while lots are assigned time series randomly drawn from a467

library of typical residential demand curves. For simplicity, criticality ratings468

and vertex/edge capacities are assumed to be static, although they could easily be469

represented with their own time series.470

Empirical data for different types of buildings in summer was obtained from471

several sources (e.g., water consumption data was sourced from the California472

Public Utilities Commission [66], electricity data fromOntario PowerGeneration).473

Examples of water demand curves appear in Figure 6 below:
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Fig. 6. Hourly time series showing water demands from a laundromat and hospital over an average
day. The time series have been normalized to create a probability distribution. For use in the CFC
method, these distributions are scaled by average water usage per day.

474

CFC values are computed for each time step C ∈ [1, )] by loading the relevant475

time series data for C and executing Algorithm 2. An overview of the process is476

provided inAlgorithm 5. Upon termination of this procedure, each node and edge477

in the interdependent system has a set of CFC values — one for each time step —478

that can be used in statistical analysis.479

Figure 7 shows a graph of CFC values for the water network’s edges over the480

full 24-hour cycle:481

The edge with a constant criticality rating of 1 is the lone edge incident to the482

source/reservoir. In general, the edges with significant criticality values tend to483

remain critical throughout the 24-hour cycle, with interesting behaviour happening484

during the middle of the day. Low criticality nodes become more critical during485
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Function ComputeCriticaltyForTimeSeries(G)
foreach C ∈ [1, )] do

LoadDemands(G, C)
ComputeInterdependentCFC(G)

end
Algorithm 5: Computing CFC on a system-of-systems with time-varying
demands.

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

TIME

Fig. 7. CFC values for each edge in the water network.

mid-day, when significant water demand begins to push capacity constraints.486

In contrast, the edges of the electricity network display a more stable distribu-487

tion. In Figure 8, one can clearly see that there are fewer intersections between488

lines in the plot of electricity edge criticality values. The edge to the single source489

node again has a constant criticality rating of 1, and the fluctuation in criticality490

values of other major edges is much less pronounced. This is likely a consequence491

of the fact that the demand on the electricity network does not tend to push capacity492

constraints as much as the demand on the water network.493

To recap, Algorithm 5 results in a set of CFC values ���C (2), where C is a
timestep and 2 is a component. For instance, the output for the water system edges
can be represented as a matrix���4F0C4A in which rows are timesteps and columns
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Fig. 8. CFC values for each edge in the electricity network.

are edges:

ILIC44F0C4A =

���������
���1(41) ���1(42) ���1(43) . . . ���1(4 |� |)
���2(41) ���2(42) ���2(43) . . . ���2(4 |� |)

...
...

...
. . .

...

���: (41) ���: (42) ���: (43) . . . ���: (4 |� |)

���������
494

One major issue not addressed by classical works on network centrality (e.g., [25])495

is the choice of ranking method for component measures taken at different times.496

The most intuitive approach to ranking the components is to take the sample mean497

of each column and to subsequently rank columns in descending order. This would498

be an appropriate strategy if each row of the matrix was a sample from the space of499

assignments (i.e., in a Monte Carlo approach) at a given time C. However, the rows500

in the matrix are assessments of the system at different points in time. The use of501

descriptive statistical measures (e.g., average, variance) elides system dynamics.502

The same is true of various other methods (e.g., spectral analysis, information503

theory) that might be employed to analyze the matrix.504

The choice of ranking approach is dependent upon the purpose of analysis.505

Consider a long-term (e.g., multi-year) analysis that attempts to study the distri-506

bution of critical flow patterns in response to changing population densities and507

land-use patterns. In such a setting, the long-term behaviour of the system is of508

interest.509
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Figure 9 displays a situation in which criticality curves for two different com-510

ponents have the same integral but completely different trends over time. For a511

long-term (decadal) analysis of infrastructure criticality, the component with the512

orange criticality curve is clearly the more important of the two. In this setting,513

some form of trend-based, multi-variable time series analysis is required.514

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2044 2045 2046 2047 2048 2049 2050 2051 2052

TIME

Fig. 9. Two components with similar integrals but different long term behavior.

Since the time series in this paper represent average demands in a daily cycle,515

components are ranked according to the integral of their CFC curve. Taking the516

water network edges as an example, a cubic spline is defined on the set of sample517

points {(���1(4), ���2(4), . . . , ���: (4)} corresponding to edge 4 ∈ � .518

An integral is calculated from the cubic spline (as shown in Figure 10) and519

normalized by the maximum possible area "�-_��� · (: − 1) = 1 · 23 = 23520

(recall that CFC values are already normalized, so that the maximum CFC at any521

time step is 1). The result is then assigned to the edge 4 as its global CFC value522

���� (4) for the entire time series. The set of all water network edges � is then523

ranked by sorting the edges according to their ���� values.524

The same process is repeated for vertices, and for the other networks in the525

system-of-systems. Because of the way in which the critical flow centrality metric526

is defined, values for edges and vertices are commensurate, allowing a global527

ranking of all components in the interdependent system.528
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Fig. 10. Computing the global CFC value for a given component 4. A cubic spline is overlaid on
the CFC values for 4. The integral of the spline (blue) is computed and normalized by the total
area.

5. Reliability529

This section demonstrates that the CFC measure may be combined with stan-530

dard approaches to network reliability — namely, (1) edge reliability measures,531

and; (2) ‘leave one out’ failure analysis.532

5.1. Edge Reliability533

An arbitrary networkmodel can be augmented by adding a reliability function
A : � → [0, 1] that assigns edges 4 ∈ � a reliability rating A (4) ∈ [0, 1] [67]. One
can combine this approach with CFC measures by creating a composite measure
that estimates the joint reliability and criticality of a component. For instance, the
(normalized) Unreliable Critical Flow (“UCF") for an edge 4 ∈ + is:

�′*�� (4) = �′�� (4) (1 − A (4))

where �′�� (4) is the normalized CFC for edge 4. (The UCF is ‘normalized’ since534

values lie in the range [0, 1], since �′�� (4) and A (4) are both in [0, 1].) Under535

this measure, components are important to the degree that they are: (1) unreliable,536

and; (2) instrumental for the delivery of resources to critical locations.537

The computation of the UCF measure can be accomplished with a slight538

modification to the algorithm for the CFC. Instead of a static value A (4), the539

reliability rating for a network component 4 can also be represented as a time540
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series '4 = {A41, A42, . . . , A4: }. This allows the modeler to represent different541

processes (e.g., decreasing reliability of components over long time periods).542

The UCF measures are computed for each timestep C using the CFC values543

and reliability ratings at C. The end result is a matrix in which entry (8, 9) gives544

the UCF values for each edge 4 9 at timestep 8. As in the case of the CFC, a cubic545

spline is overlaid on the values for each edge, creating an unreliability curve. After546

computing the integral and dividing it by the maximum possible area, the global547

UCF value for edge 4 is computed.548

Geospatial dependencies between infrastructure components can be introduced549

into edge reliability analysis in a number of ways. For example, edges that are550

co-located (e.g., a water pipe and electricity pipe sharing the same service tunnel)551

could be forced to share the same reliability rating. Co-located components could552

also be assigned a reliability penalty that reflects the fact that component failures553

are no longer completely independent.554

5.2. ‘Leave One Out’ Failure Analysis555

CFC measures can also be used with a common form of reliability analysis556

in which components are deliberately failed or degraded (e.g., by reducing their557

capacity) in order to assess the effects on the system. A component 4 may have a558

high CFC value under a given assignment, but it may be the case that if 4 suffers559

a (partial) failure there are other routes (i.e., fallbacks) through which flow may560

travel in order to satisfy critical demand. Figure 11 illustrates this situation:561
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Fig. 11. Two networks with different behaviour in edge failure scenarios. Network A carries most
of its critical flow through the path {41, 42, 43}. In case of edge failure, no alternative paths are
available. Network B has a fallback route in case edge 43 fails.

This formof failure analysis provides an indication ofwhether there are fallback562

routes that can supply critical flow in the event that a component 4 fails. If the563

failure of 4 consistently results in reduced critical flow across the entire network,564
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one can assume that 4 is even more critical than the CFC measure alone might565

suggest.566

Algorithm 6 shows a high-level view of a procedure in which capacities of
edges in a single infrastructure system are degraded one-at-a-time. For each time
C < ) , appropriate demands and criticality values are loaded into the graph. Then
each edge 4 ∈ � is considered in order, degrading its capacity and performing the
CFC computation on the altered network. The critical flow is then used to create
a loss measure that indicates the amount of critical flow that is lost when edge 4 is
degraded. The failure loss �!C (4) for edge 4 ∈ � at time C is:

�!C (4) = 1 −
∑
3∈+� 5� (3, C)2A (3, C)∑
3∈+� X(3, C)2A (3, C)

where (recalling Section 3.4) +� is the set of demand nodes in �, X(3, C) is the567

demand at time C from demand node 3, 5� (3, C) is the actual flow to 3 at time C, and568

2A (3, C) ∈ [0, 1] is the criticality rating for 3 at C. Failure loss values range from 0569

(no effect on resource delivery) to 1 (absolute disruption of resource delivery).570

Function PerformEdgeFailureAnalysis(()
foreach C ∈ [1, )] do

LoadDemands((, C)
foreach 4 ∈ � do

Var originalCapacity← e.capacity
e.capacity← Degrade(e.capacity)
ComputeSingleSystemCFC(S)
ComputeFailureLoss(S)
e.capacity← originalCapacity

end
end

Algorithm 6: Edge failure analysis on network ( with time-varying demands.

The edge failure mechanism was tested on the network from Figure 4 by571

degrading the capacity of each edge 4 to 0. (Demands and criticality ratings were572

the same as in previous sections.) The failure loss �!C (4) was computed for each573

edge 4 at each time C ∈ [0, 23] and averaged over the 24 hour cycle to create574

an aggregate failure loss metric. The CFC values for each edge 4 were likewise575

averaged over the same time frame.576
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Figure 12 shows both the averaged CFC and averaged FL metrics for the577

edges of the water network. Two facts are immediately obvious. First, the vast578

majority of edges have negligible average CFC and FL values. These are typically579

low-capacity feeds from a residential street’s water pipe to an individual lot/parcel.580

CFC

FL

Fig. 12. Averaged failure loss (FL) and averaged critical flow centrality (CFC) on the edges of the
water network in Figure 4, computed over a 24-hour period. The majority of edges (e.g., those
that feed individual lots) have negligible FL and CFC values.

Second, a significant percentage of of those edges with high CFC ratings also581

have low FL values. Although these pipe segments carry a sizable amount of582

critical flow, alternative routes are available in case they should suffer individual583

failures. Examples include the pipes that define the loops around residential blocks;584

these loops are resistant to individual failure, since there are two paths from the585

entry point of the loop to any lot/parcel.586

Of course, the main pipes from the reservoir have no backups, as demonstrated587

by the overlap of FL and CFC values for edge 320. In general, the correlation of FL588

and CFC ismildly significant but also somewhat misleading as a summary statistic.589

With a different network topology that included multiple sources and alternative590

paths, one would expect less correlation between the FL and CFC values, making591

the easily computable CFC a poor predictor of the consequences of edge failures.592
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5.3. Reliability Integration Limitations and Assumptions593

The edge failure analysis presented above was subject to several simplifying594

assumptions. First, geospatial dependencies were not included in the analysis for595

reasons of brevity. Second, the failure loss analysis was performed on a single596

network instead of a set of interdependent networks. Third, the reliabilitymeasures597

could also incorporate component capacity, in order to capture the intuition that a598

component nearing its maximum load is likely to be less reliable.599

Fourth, the definition of the FL metric uses the aggregate of all demands at600

the network’s demand nodes as the normalizing factor. This is appropriate for a601

networkwhere all demands are satisfied in the baseline state, but itwill overestimate602

losses in networks which exhibit unsatisfied demand. For the scenario utilized in603

this paper, however, this assumption is reasonable.604

This method outlined in this work does not assume that the methods used to605

model each layer are commensurate. That is, the electricity layer may be modeled606

with one set of domain-specific techniques, while the water layer may be modeled607

with another. All that is required is for each layer to provide a means of flow608

computation and a basic network topology. This design decision, while useful609

from a software engineering perspective, precludes the use of standard approaches610

to modeling cascading failures.611

Tomodel physical dependencies and cascading failure in such a setting requires612

the use of additional machinery. Component failure in the electricity system could613

result in reduced power levels at the water pumps; this, in turn, could alter water614

distribution flows, result in reduced electricity demand from other components of615

the water system — thereby changing demand patterns for the electricity system.616

Thus, the result is an equilibrium problem in which changes in one layer percolate617

through other layers, and then back again. Solving such a problem is well beyond618

the scope of this paper.619

6. Conclusion620

This paper demonstrated how component importance measures based on the621

notion of critical flow may be applied to interdependent, urban infrastructure622

systems. The motivation for the work was to provide urban planners and municipal623

engineers with a method of reasoning about the impacts of interventions on the624

flow of resources to critical locations. The main theme was that network analysis625

techniques could be combined with criticality and reliability metrics in order to626

produce composite methods that provide useful information to stakeholders.627
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The perspective of the method was resource-based, focusing on the ways in628

which system components participate in the delivery of resources. Each individ-629

ual infrastructure system (8 of a composite system S was represented as a flow630

network with demands, capacities, supply limits, and criticality ratings. The paper631

considered physical dependencies in which one subsystem (8 requires resources632

from another subsystem ( 9 .633

In the simple variant described in the paper, network flows and ‘critical flow634

centrality’ (“CFC") measures were computed using a discrete approach. More635

sophisticated variants are possible, including the use of domain-specific simulation636

techniques. For simplicity, the paper assumed that the subsystem dependencies637

form a directed acyclic graph.638

The method was demonstrated by use of a simple, district-scale model of a639

city that contained electricity and water networks. Empirical data was used to640

estimate resource consumption for different types of buildings, yielding a set of641

demand curves that represent consumption in a 24-hour cycle. This decision642

simplified the analysis, and allowed the use of integrals to compute a global CFC643

value for the entire cycle. For the study of trends in infrastructure systems over644

time, the integral-based aggregation would need to be supplanted by trend-based,645

multi-variable time series analysis.646

Despite the simplifying assumption, the simple method presented in the paper647

satisfied the goals outlined in Section 3.1. First, the computation of CFC metrics648

for an interdependent system can be computed efficiently. For a model S =649

{(1, (2, . . . , (: } consisting of : subsystems, computation of CFC metrics for S650

on typical infrastructure networks is $ (:+2), where + is the average number of651

nodes in the subsystems. This compares favorably with other centrality measures,652

which can be $ (+3) or greater.653

Second, the demonstration showed that the basic method correctly propagates654

resource demand, criticality ratings and CFC values between systems. Not only655

are CFC values comparable across components within a given system, but they656

are commensurable across systems – even in cases where disparate modeling657

methodologies have been used.658

Third, the paper showed how common network reliability approaches can be659

combined with CFC measures to yield composite metrics. Edge reliability can be660

directly integrated into the CFC framework by adding another attribute to the edges661

and tweaking the CFC computation slightly. The paper also discussed edge failure662

analysis, showing that a composite failure loss metric can be defined that gives663

an indication of the availability of fallback routes for the delivery of resources to664

critical locations.665
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Many avenues of future work remain, the most important of which is removing666

the restriction of G to directed, acyclic graphs. To do so invites consideration of667

equilibrium concerns — changes in one network cause changes in others, altering668

flow distributions and demand patterns in complex ways. Providing solutions for669

this type of problem is well outside the scope of the present paper.670

The instantiation of the CFC computation presented in both the current and671

previous papers are suitable formedium/long time horizons. Themain culprit is the672

use of integer-valued representations for demands and capacity constraints. This673

decision, which was made in order to simplify the problem and avoid numerical674

instability, means that short termdynamics are difficult to represent. This precludes675

forms of analysis in which the rates of change (e.g., of flow) on system components676

may be analyzed. The use of floating point representations and domain-specific677

flow computation methods (e.g., simulation) will avoid this restriction.678

Evenwith this restriction in place, there are still additional issues to be resolved.679

First, a more realistic flow mechanism (e.g., domain-specific methods) should680

replace the generic Edmonds-Karp algorithm that favors shortest paths (thereby681

introducing artifacts into the flow solution). Second, geospatial dependencies682

should be introduced into both the edge reliability and component failure analyses.683

Additional avenues of future research were hinted at throughout the paper.684
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