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Abstract

This paper implements the Virtual FieldsMethodwithin the ordinary state based peridynamic frame-work to identify material properties. The key equations derived in this approach are based on the princi-ple of virtual works written under the ordinary state based peridynamic formalism for two-dimensionalisotropic linear elasticity. In-house codes including a minimization process have also been developed toimplement the method. A three-point bending test and two independent virtual fields arbitrarily chosenare used as a case study throughout the paper. The numerical validation of the virtual fields methodhas been performed on the case study by simulating the displacement field by finite element analysis.This field has been used to extract the elastic material properties and compared them to those usedas input in the finite element model, showing the robustness of the approach. Noise analysis and theeffect of the missing displacement fields on the specimen’s edges to simulate digital image correlationlimitations have also been studied in the numerical part. This work focuses on pre-damage propertiesto demonstrate the feasibility of the method and provides a new tool for using full-field measurementswithin peridynamics with a reduced calculation time as there is no need to compute the displacementfield. Future works will deal with damage properties which is the main strength of peridynamics.
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Nomenclature
Material properties

E Young’s modulus [MPa]
ν Poisson’s ratio
K Bulk modulus [MPa]
G Shear modulus [MPa]
Geometrical parameters

h Mesh size / Nodal spacing [mm]
L Length of the beam [mm]
S Distance between the pins to supporting pins [mm]
Sf Surface with prescribed loading [mm2]
Su Surface with prescribed displacement [mm2]
t Thickness [mm]
Vf Volume with prescribed loading [mm3]
Vu Volume with prescribed displacement [mm3]
W Width of the beam [mm]
Classical continuum mechanics tensors

σ Cauchy stress tensor [Components inMPa]
ε Infinitesimal strain tensor
ε̂ Actual infinitesimal strain tensor
ε? Virtual infinitesimal strain tensor
C Stiffness tensor [Components inMPa]
Peridynamic objects

δ Peridynamic horizon [mm]
H Family of a material point
Hi Discrete family of a node i
Hx Spherical region centered on x
q Peridynamic weighted volume
ξ Peridynamic bond
fv Dual force density [Components in Nmm−6]
tv Bond force density [Components in Nmm−6]
M Deformed direction state
T Force state [Components in Nmm−6]
Y Deformation state [Components inmm]
w Influence state
es Spherical extension state [Magnitude inmm]
ed Deviatoric extension state [Magnitude inmm]
αs Spherical peridynamic parameter
αd Deviatoric peridynamic parameter
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Position and displacement vectors

x Reference position vector [Components inmm]
y Deformed position vector [Components inmm]
u Displacement vector [Components inmm]
u Prescribed displacement vector [Components inmm]
û Actual displacement vector [Components inmm]
u? Virtual displacement vector [Components inmm]
Force vectors

b Body force density vector [Components in Nmm−3]
F Force vector [Components in N]
F Prescribed force vector [Components in N]
T Prescribed surface force vector [Components in Nmm−2]
Other Symbols

I Search interval
C Set of kinematically admissible displacement fields
S Set of statically admissible displacement fields
W ?

int Internal virtual work within classical continuum mechanics [Nmm]
W ?

ext External virtual work within classical continuum mechanics [Nmm]
W?

int Internal virtual work within peridynamics [Nmm]
W?

ext External virtual work within peridynamics [Nmm]
ε Tolerance to end the minimization process
εK Relative error related on the bulk modulus
εG Relative error related on the shear modulus
µ Mean of a Gaussian distribution
Φ Residual function to minimize in the virtual field method
Σ Standard deviation of a Gaussian distribution
Ω Domain of an elastic body
Ω0 Domain of an elastic body in the reference configuration
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1 Introduction
Peridynamics (PD) reformulates continuum mechanics balance laws [Silling, 2000] through the non-localintegration of the interactions between material points. Each material point interacts with its neighborswithin a finite δ-radius region, the so-called horizon. Contrary to classical continuum mechanics, the PDgoverning equations are directly expressed in terms of force and displacement between material points,instead of spatial derivatives. This makes PD a suitable framework to address discontinuities, like cracksoccurring in damage process [Silling, 2016]. Moreover, crack initiation and growth are addressed with onlya single critical damage parameter that is triggered when a threshold is reached. This threshold can forexample be related to the well-known free energy release rate [Silling and Askari, 2005,Foster et al., 2011]or to the J-integral value [Silling and Lehoucq, 2010]. Therefore, the cracks propagate autonomously withinthe PD framework and no predefined path, nor other external criteria are needed. Different fracturemodescan therefore be accounted for [Hu et al., 2015]. Extended finite elements, cohesive zone models and PDpredictions are compared against experimental data [Agwai et al., 2010] for crack initiation and growth. Theauthors found that PD yields themore natural crack path, including branching andmicro-branching.
Many authors have attempted to clarify the horizon concept [Bobaru et al., 2009, Bobaru and Hu, 2012]since this is amajor PD parameter. In addition, well-known and accepted constitutive theories andmethodsderived within classical continuum mechanics have yet to be transposed into the PD framework [Bobaruet al., 2016,Delorme et al., 2017].
Full-field measurements can be used to obtain every material parameter from a single, heterogeneous,mechanical test [Avril and Pierron, 2007]. Full displacement fields can be obtained with surface measure-ments techniques like Digital Image Correlation (DIC). Finite ElementModel UpdatingMethod [Cottin et al.,1984,Rouger et al., 1991, Lecompte et al., 2007], the Constitutive Equation Gap Method [Florentin and Lu-bineau, 2010], the Equilibrium Gap Method [Claire et al., 2004] or the Virtual Fields Method [Pierron andGrédiac, 2012] have been developed within classical continuum mechanics to obtain material parametersfrom such full-field measurements. These methods were also described in terms of flexibility of use, full-field displacement data accuracy, noise sensibility, computation time, etc. [Avril et al., 2008].
To the best of the authors’ knowledge, only a handful of publications focused on full-field measurementsand inverse methods to identify constitutive parameters within PD. An approach which combines DIC andPD was developed [Turner, 2014] to determine full-field displacements for problems involving discontinu-ities. The principle is to use DIC where it is accurate, i.e. in continuous zones, and to add PD calculationsin discontinuous regions. Thus, the full-field displacement solution is the combination of the DIC and PDcalculations. An inverse method within state-based PD and using a Tikhonov regularization was devel-oped [Turner et al., 2015] to extract thematerial properties and it provides promising prospects for damagecharacterization. However, it requires to compute the displacement field from the PD model at each step,which can be time consuming. Also, the robustness of the method against the initial guesses feeded in theminimization objective function and the selection or the effect of the horizon on the convergence were notstudied.
The purpose of this work is to derive an equivalence to the Virtual Fields Method (VFM) within the PDframework to identify material properties. A key point of the VFM, when compared to the other methods,is that no computation of the displacement field during the optimization process is needed. Moreover, thiswork focuses on pre-damage properties to demonstrate the feasibility of the Peridynamics-Virtual FieldsMethod (PD-VFM).
The paper is organized as follows. Sec. 2 recalls background information about the VFM within classicalcontinuum mechanics and the PD framework. Sec. 3 explains the VFM using the theorem of virtual worksformulated within the state-based PD framework. Sec. 4 presents a three-point bending simulation whichis the case study used in the sequel. Sec. 5 describes the numerical implementation of the PD-VFM. Finally,Sec. 6 provides a numerical validation in which the displacement field of a three-point bending test hasbeen simulated by finite element analysis and used to extract the material properties which have beenthen compared to those used as model input. The following notation is adopted in the paper:
• Light-faced letters (e.g. a, α, A) denote constants or scalar quantities;
• Bold-faced roman letters (e.g. a,A) denote first-order tensors;
• Bold-faced lowercase greek letters (e.g. α) denote second-order tensors;
• Non-italic bold-faced capital roman letters (e.g. A) denote fourth-order tensors;
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• Underlined light-faced lowercase letters (e.g. a) denote scalar states;
• Underlined bold-faced capital letters (e.g. A) denote vector states;
• “⊗” is the tensor product and “:” is the doubly contracted product;
• Index notation and Einstein summation convention are used, unless specified otherwise.

2 Background

2.1 Virtual Fields Method (VFM) within classical continuum mechanics
2.1.1 Fundamental equations

Consider an elastic bodywithin a domainΩboundedby∂Ω and governedby the following equations:
The equilibrium equation, assuming long-range forces are negligible{ ∇ · σ = 0 inΩ (1a)

σ · n = T onSf ⊂ ∂Ω (1b)
where σ is the Cauchy stress tensor, n the outward unit normal vector and T the prescribed load actingon the surfaces Sf .
The kinematic compatibility equation, within the infinitesimal strain theory

ε =
1

2

(
∇ · u+∇t · u

) inΩ (2a)
u = u onSu ⊂ ∂Ω (2b)

where ε is the strain tensor, u the displacement vector and u the prescribed displacement acting on thesurface Su. Sf and Su are such as Sf ∪ Su = ∂Ω and Sf ∩ Su = ∅.
The constitutive equation {

σ = C : ε inΩ (3a)
C = C(θ) (3b)

where C is the stiffness tensor that depends on k constitutive parameters θ = (θ1, · · · , θk). For in-stance, an isotropic material depends on θ = (K,G) where K is the bulk modulus and G the shearmodulus.
Set of admissible fields

S(T ) =
{
τ | ∇ · τ = 0 inΩ and τ · n = T onSf

} (4)

C(u) = {v | v = u onSu} . (5)
where S and C are respectively the sets of statically admissible stress field and of kinematically admissible
displacement field. It is worth noting here that the τ and v fields are independent of each other and notrelated through any constitutive model.
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2.1.2 Principle of Virtual Works (PVW)

The Principle of Virtual Works (PVW) can be expressed from Eq. (1) as [Pierron and Grédiac, 2012]

−
∫
Ω

σ : ε? dV +

∫
S

T · u? dS = 0 ∀u? ∈ C(0) (6)
where u? (assumed continuous) and ε? = 1

2 (∇ · u? +∇t · u?) are respectively the virtual displacementand strain fields. u? ∈ C(0) means the virtual field is kinematically admissible such as u? = 0 over
Su in order to vanish the contribution of the unknown prescribed loading over Su. Both u? and ε? areindependent of σ. Eq. (6) can be divided into the following “physical” quantities:

W ?
int = −

∫
Ω

σ : ε? dV Virtual work done by the internal forces
W ?

ext =

∫
S

T · u? dS Virtual work done by the external forces.

Thus, the PVW applied to a body in mechanical equilibrium yields
W ?

int +W ?
ext = 0 ∀u? ∈ C(0). (7)

It should be noted that the virtual quantityu?, also known as virtual displacement, was implicitly assumedto have a length dimension. This provides the convenient “physical” interpretation of the principle of thevirtual works for readers with engineering backgrounds. However, this virtual displacement has nothing todo with the actual displacement as it is a purely mathematical function bearing no relation whatsoever tophysical quantities. Thus, the physical dimension of the different terms of the PVW depend on the physicaldimensions of the virtual quantity.
2.1.3 VFM and constitutive theory identification

The VFM is based on the PVW in which the strain field, denoted by ε̂, is experimentally determined usingfull-field measurement techniques. The nature of the material and its constitutive equation are assumedto be known. For example, for an elastic material where σ = C(θ1, · · · , θk) : ε̂, the governing equationbecomes ∫
Ω

[C(θ1, · · · , θk) : ε̂ ] : ε? dV =

∫
Sf

T · u? dS ∀u? ∈ C(0). (8)

Then, at least k independent virtual fields must be chosen, among an infinite number of possibilities, todevise a systemof k equationswhose solution yields the k unknown constitutive parameters. The choice ofthese virtual fields is a key step. Threemain approaches have been studied so far [Avril et al., 2008]:
1. manually using a polynomial function (see the example below);
2. automatically with special fields [Grédiac et al., 2002a] that directly supply the constitutive param-eters from the virtual work of the external loads. These special fields also reduce the technique’snoise sensitivity [Avril et al., 2004];
3. piece-wise within the material [Toussaint et al., 2006]. Continuous lower-degree polynomial func-tions between each sub-region can be used. These latter avoid to use a high-degree polynomialdefined on the whole geometry, and which would magnify the noise negative effects.

It should be noted that the volume integral in Eq. (8) requires the knowledge of the strain field in thesolid. This is a drawback of the VFM since most of full-field measurement techniques, e.g. Digital ImageCorrelation (DIC), provide in-plane strains over the specimen external surface. Plane stress, plane strain orbending in thin plates loads are typically used to circumvent this limitation.
The VFM was applied to identify the material properties such as

• the in-plane linearly elastic properties of orthotropic composite plates from heterogeneous strainfields [Grédiac et al., 1999,Grédiac et al., 2002b,Toussaint et al., 2006];
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• the properties of a non-linearly elastic material assuming a polynomial stress/strain relationship[Grédiac et al., 2002b];
• the bending rigidities of anisotropic thin plates within the framework of the Kirchhoff-Love theory[Grédiac, 1989,Grédiac et al., 2003];
• the stiffness and damping properties of thin viscoelastic isotropic vibrating plates [Giraudeau andPierron, 2005];
• the properties of a material within a plastic behavior using an iterative procedure based on a min-imization process as there is no direct relation between σ and the measured strains ε̂ [Toussaintet al., 2006];
• the damage parameters [Pierron and Grédiac, 2012] within the continuum damagemechanics [Lade-veze and LeDantec, 1992].

All of these examples show that the VFM can be adapted to several kinds of problems. However, in all ofthem, the success of the VFM relies on the optimal choice of virtual fields.
2.2 Peridynamic (PD) framework
2.2.1 Fundamental equations

In peridynamics [Silling, 2000, Silling and Lehoucq, 2010, Bobaru et al., 2016], a material point locatedat x interacts with all other material points within a region Hx, centered on x and of a radius δ, whichis referred to as the horizon (see Fig. 1). These material points in interaction with x are defined in thereference configuration Ω0 and are not updated over time.
Let a material point be located at x′ inHx. Let fv = fv(x′,x) be the dual force density that a point at x′

exerts on a point at x. fv is a force per unit volume squared and has the following properties{
∀x′ /∈ Hx =⇒ fv = 0 (9a)
fv(x,x′) = −fv(x′,x) (9b)

Eq. (9b)’s anti-symmetry results from the reciprocity principle. Thus, fv can be expressed using the bondforce density tv as
fv(x′,x) = tv(x′,x)− tv(x,x′). (10)

When assuming that long-range forces (e.g., gravity) are negligible, and similarly to Eqs. (1) and (2), the PD

e2

Hx

δ

e1

e3

ξ

H

x′

x

Ω0
∂Ω0

Figure 1: Amaterial point located atx interacts with all othermaterial points within a regionH = Hx∩Ω0,centered on x and of a radius δ, which is referred to as the horizon [Delorme, 2018e]
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equilibrium equation is 

∫
Hx ∩Ω0

fv(x′,x) dVx′ + b(x) = 0 ∀x ∈ Ω (11a)

b = F onVf (11b)
u = u onVu (11c)

F and u are the prescribed non-local boundary conditions acting on the boundary volume regions Vfand Vu. These are thin real material layers on the boundary of Ω and are such that Vf ∪ Vu = ∂Ω and
Vf ∩ Vu = ∅. b is the external load applied as a body force density, i.e., b = 0 in Ω r Vf . This is differentfrom classical continuum mechanics in which the boundary conditions are prescribed over the surface
∂Ω.
Fig. 1 shows that the locality of PD depends on the horizon radius δ. In elasticity, it is demonstrated thatPD converges to classical continuum mechanics when the horizon approaches zero [Silling and Lehoucq,2008, Silling and Lehoucq, 2010].
2.2.2 State-based theory

A mathematical object called states was developed [Silling et al., 2007, Silling and Lehoucq, 2010] for thestate-based theory. The states and their properties are presented in details in App. A of [Delorme et al.,2017]. The main definitions are recalled here.
A vector state is a general mathematical object that maps vectors onto vectors. The well-known second-order tensor can be viewed as a special vector state. In classical continuum mechanics, the constitutivemodel is expressed through a relationship between the Cauchy stress tensor σ and the strain tensor ε.Similarly, a PD constitutive model is expressed with a force stateT linked to a deformation stateY.
Let x ∈ Ω0 and x′ ∈ Hx denote two material points in the reference configuration. Let ξ be the vectordefined by ξ = x′ − x and called the bond connected to x. The familyH of x is defined by

H =
{
ξ ∈

(
R3 \ 0

)
| (ξ + x = x′) ∈ (Hx ∩ Ω0)

} (12)
whereH andHx are schematized in Fig. 1.
Let Y be the deformation state that transforms bonds ξ connected to x to their deformed images as

∀ξ ∈ H, Y[x] 〈ξ〉 = y(x+ ξ)− y(x) = y(x′)− y(x) ∈ R3 (13)
where y(x) and y(x′) are, respectively, the deformed positions of x and x′. Fig. 2 illustrates these vari-ables. It is further assumed that

∀ (x1,x2) ∈ Ω2
0 | x1 6= x2 =⇒ y(x1) 6= y(x2) =⇒ Y[x] 〈ξ〉 6= 0, (14)

which means that two distinct points in the reference configuration Ω0 are also distinct in the deformedconfiguration Ωt. Thus, the deformed direction vector stateM is defined by
M =

Y

|Y|
. (15)

The force stateT is related to the bond force density tv through
∀ξ ∈ H, T[x] 〈ξ〉 = T[x] 〈x′ − x〉 = tv(x′,x) ∈ R3. (16)

Combining Eqs. (9), (11a) and (16) leads to the PD equilibrium equation such as, ∀x ∈ Ω0,
∫
Ω0

(
T[x] 〈x′ − x〉 −T[x′] 〈x− x′〉

)
dVx′ + b(x) = 0 (17a)

fv(x′,x) = T[x] 〈x′ − x〉 −T[x′] 〈x− x′〉 (17b)
App. B of [Delorme et al., 2017] presents the three PD constitutive models which are the bond-based, the
ordinary state-based and non ordinary state-based theories. In the sequel, only the ordinary state basedapproach is used since isotropic linearly elastic materials are considered.
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2.2.3 2D ordinary state-based model for linearly isotropic elasticity

This section provides the constitutive models for an linearly isotropic elastic material under plane stressand plane strain (see App. A for details).
2D plane stress constitutive model

T =

{
1

3

[
2

(
2ν − 1

ν − 1

)
αs +

(
ν + 1

ν − 1

)
αd

]
w es + αd w ed

}
M (18a)

αs =
1

q

[
9K +G

(
ν + 1

2ν − 1

)2
]

(18b)

αd =
1

q
(8G) (18c)

where αs and αd are the spherical and deviatoric PD parameters, es and ed the spherical and deviatoricextension state, ν the Poisson’s ratio and q the PD weighted volume (see Eq. (37) and [Silling et al., 2007]for more details).
2D plane strain constitutive model

T =

{
1

3

(
2αs − αd

)
w es + αd w ed

}
M (19a)

αs =
1

q
(9K +G) (19b)

αd =
1

q
(8G) (19c)

2.2.4 Discretization

Several approaches have been used to discretize the PD equilibrium equation (17) such as Galerkin finite el-ementmethods [Chen and Gunzburger, 2011], Gauss quadrature [Weckner and Emmrich, 2005], the spatialdiscretization [Emmrich and Weckner, 2007,Parks et al., 2008] or the EMU (name of the first PD softwareimplemented [Littlewood, 2015]) nodal discretization (ND). The last method (EMU-ND) consists of a mid-point (or one-point) quadrature in a Lagrangian spatial discretization. The EMU-ND has been chosen for itsefficient load distribution scheme and acceptable computation time. Fig. 3 shows the mesh of a referenceposition in 2D with regularly spaced nodes where h is the fixed mesh size. Each node i, located at xi in the

Ω0

Ωt

x

x′
ξ

y(x)

y(x′)

Y[x] 〈ξ〉

Reference position

Deformed position

H

H

Y[x] 〈·〉

Figure 2: The deformation state Y transforms bonds ξ ∈ H to their deformed images. y(x) and y(x′)are, respectively, the deformed positions of x and x′ [Delorme, 2018c].
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dual mesh, is associated to a fixed volume Vi. Assume that the volumes surrounding the nodes are nonoverlapping (Vi ∩ Vj = ∅), and are recovering the reference volume VΩ, meaning that∑n
i Vi = VΩ. Thediscrete familyHi of a node i is defined by:

Hi = {j | xj ∈ Ω0 and ‖ξi‖2 = ‖xj − xi‖2 ≤ δ} (20)
Thus, the discrete PD equilibrium equation under the EMU-ND scheme, and which has to numerically besolved for each node i, reads

∑
j ∈Hi

(
T[xi] 〈xj − xi〉 −T[xj ] 〈xi − xj〉

)
Vj + bi = 0 (21a)

fv(xj ,xi) = T[xi] 〈xj − xi〉 −T[xj ] 〈xi − xj〉 (21b)
where bi is the external load applied to the node i. Recall that bi = 0 if node i is not on an external layerof the body where the external load is applied.
One drawback reducing the accuracy of this discretization is the treatment of nodes j whose Vj is partiallyinside the horizon of a node i and partially outside (see Fig. 3). Several algorithmswere evaluated [Seleson,2014] to improve the accuracy of the discretization using partial areas taking into account the fraction thatis outside the horizon. The most common is the PA-PDLAMMPS algorithm [Parks et al., 2008] which hasbeen implemented in the code [Delorme et al., 2018] presented in Sec. 5.

3 The Virtual Fields Method within Peridynamics

3.1 Principle of Virtual Works
Since Eq. (17) is valid for any x ∈ Ω0, each term can be “multiplied” (using the Euclidean inner product) byany continuous vector function u? such as∫

Ω0

fv(x′,x) dVx′ + b(x)

 · u?(x) = 0. (22)

Integrating Eq. (22) over the whole domain Ω0 yields the PVW stated as∫
Ω0

∫
Ω0

fv(x′,x) · u?(x) dVx′ dVx +

∫
Ω0

b(x) · u?(x) dVx = 0. (23)

Ω0

h

e1

e2

xi

Hi

Vi

Figure 3: 2D EMU-ND and its mesh with a constant mesh size h. Vi is the surrounding volume of the node
i located at xi and Hi its discrete family. The integration over Hx from Eq. (11) is now replaced by thediscrete sum fron Eq. (21) overHi [Delorme, 2018d].
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Assume that the virtual quantity u? is kinematically admissible, i.e. u? ∈ C(0), then, the contribution ofthe unknown force over the boundary volume constraint region Vu vanishes. Eq. (23) can be divided intothe following “physical” quantities:

W?
int =

∫
Ω0

∫
Ω0

fv(x′,x) · u?(x) dVx′ dVx (24a)

W?
ext =

∫
Ω0

b(x) · u?(x) dVx (24b)
whereW?

int is the virtual work done by the internal dual force densities andW?
ext the virtual work doneby the external forces. As for CCM version of the PVW,W?

int +W?
ext = 0.

3.2 Virtual Fields Method and material identification
The PD ordinary state-based constitutive equations for linearly isotropic elasticity depend non-linearly onthe material properties (Eqs. (18) and (19)). Because of this non-linear relationship, the k sought materialparameters are solution of a non-linear system. Rather than explicitly solving this non-linear system, thenon-linear set of at least k independent equations were solved by minimizing a residual function Φ. Sincelinearly isotropic elastic materials are considered, Φ requires at least two independent virtual fields u?(k)

to properly identify thematerial parameters (K,G). Thus, the residual functionΦ, defined as a normalizedsquared residual betweenW?
int andW?

ext, was

Φ(K;G) =

√√√√√√√√√√
M≥2∑
k=1

(
W?(k)

int +W?(k)
ext

)2

M≥2∑
k=1

(
W?(k)

ext

)2
, (25)

Note that the normalization was used only for comparison purpose. Also, it was assumed that u?(k) are
such that∑

k

(
W?(k)

ext

)2

6= 0.

4 Case study: three-point bending test

4.1 Geometry and boundary conditions
Fig. 4 describes a virtual three-point bending setup in which a beam, of dimensions L×W × t (length×width× thickness) and simply supported on two supports spaced of S. The coordinate system (O, e1, e2)origin lies in the specimen’s middle, on its bottom line. The beam is submitted to an external force appliedto the specimen’s top surface center as

F (0,W ) = −F · e2 (26)

4.2 The virtual displacement fields definition
Two trivial independent continuous virtual displacement fields u?(1) and u?(2) were defined:

u?(1)(x1, x2) =

(
|x1| −

S

2

)
· e2 (27)

u?(2)(x1, x2) =
(
|x1|

x1 x2

LW

)
· e1 (28)

These virtual fields, depicted in Fig. 5, are kinematically admissible, i.e. they vanish on the supports:
u?(1)

(
±S

2
, 0

)
= u?(2)

(
±S

2
, 0

)
= 0. (29)
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4.3 Application of the Virtual Field Method
The internal virtual worksW?

int were approximated from Eqs. (21) and (24a) as
W?

int =
∑
i

∑
j ∈Hi

(
fv(xj ,xi) · u?

i

)
Vj Vi. (30)

The external virtual worksW?
ext were calculated from Eq. (24b) and are equal to:
W?(1)

ext = F · u?(1)
A = F · u?(1)(0,W ) =

FS

2
(31a)

W?(2)
ext = F · u?(2)

A = F · u?(2)(0,W ) = 0 (31b)
Finally,K andG were extracted using the residual function Φ from Eq. (25) and the minimization processdescribed in Sec. 5.

F

e1

e2

L

S

W

A

Figure 4: Three-point bending setup in which a beam, of dimensions L×W × t and simply supported ontwo supports spaced of S, is submitted to an external force F . The coordinate system (O, e1, e2) origin islocated at the specimen’s bottom face center [Delorme, 2018a].
F

e1

e2

(a) Shape of the first virtual field u?(1)

F

e1

e2

(b) Shape of the second virtual field u?(2)

Figure 5: Virtual displacements applied to the three-point bending test. The coordinate system (O, e1, e2)origin is located at the specimen’s bottom face center [Delorme, 2018f].
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5 Minimization process implementation

5.1 Algorithm
Fig. 6 shows the algorithm state chart diagram used for the minimization process to extract the materialproperties from the actual displacement field. The algorithm has in input the initial guess for the materialproperties (K;G) and the actual displacement field û. A uniformly distributed random value in a searchinterval I sufficiently large to the include material’s expected properties was chosen as the initial guess.The gathered steps in the box (see Fig. 6) are repeated until the residual Φ is smaller or equal to a fixedtolerance ε. The main steps are described below:

1. The dual force density fv is computed from Eq. (21) using the trial material properties and û. Forthis step, the in-house state-based PD code PeriPyDIC [Delorme et al., 2018] is used with the 2Dconstitutive modeling described in Sec. 2.2.3). Note that instead of solving a direct problem in whichthe displacement field is computed from the boundary conditions, here the dual force density fv isevaluated from a provided displacement field.
2. The internal virtual worksW?

int are computed from Eq. (30) with the in-house code PeriPyVFM [De-lorme and Diehl, 2018], with the two virtual fields given in Eqs. (27) and (28). Note that PeriPyVFMis based on the discretized version of the equations given in Sec. 3 and can be extended to as manyvirtual fields as required.
3. The residual Φ defined in Eq. (25) is computed within PeriPyVFM usingW?

int and the external virtualworksW?
ext calculated from Eq. (31).

As long as the residualΦ is greater than the tolerance ε, the “black box” optimization solverNOMAD [Le Di-gabel, 2011], which implements themesh adaptive direct search (MADS) algorithm, provides the new guessfor the material properties. Thus, the three steps inside the box are repeated until black box minimizationfinds suitable values for the material properties and the algorithm terminates. Table 1 summarizes theversions of the software used in this paper.
Start

Initial guess (K,µ) ∈ R and actual displacement field û

PeriPyDIC: Compute the dual force density fv (Eq. (17))

PeriVFM: Compute the internal worksW?
int (Eq. (30))

PeriVFM: Compute the residual Φ (Eq. (25))

Φ ≤ ε NOMAD: Get new (K,µ)

Material properties (K,µ) found
Yes

No

Figure 6: State chart diagram of the algorithm to extract the material properties from the actual displace-ment field. The non-linear black box optimization software NOMAD [Le Digabel, 2011], based on theMADSalgorithm, is used for the minimization process.

13



5.2 Choice of the horizon δ

Choosing the ratio δ/h of horizon and nodal spacing to gain convergence is still an open question withinthe PD community [Bobaru et al., 2009,Bobaru and Hu, 2012]. Local limits and asymptotically compatiblediscretizations were considered in [Du and Tian, 2015] and [Du, 2016]. It is shown in [Tian and Du, 2013]that, if the nodal spacing h → 0 decays faster than the horizon δ → 0, the EMU-ND converges to thecontinuum local partial differential equation (PDE) limit. An empirical choice of the horizon for a specificmaterial is to adjust the horizon to fit experimental results. Convergence analysis can also be performedas described in [Bobaru et al., 2009] in which three types of convergence are presented: the δ-, m- and(δm)-convergence wherem = δ/h.
The approach used in this paper assumes the use of experimental data. In that case, the nodal spacing his more or less prescribed by the measuring equipment resolution, e.g., the DIC system. As the horizon issuch as δ = mh,m is the only parameter to adjust with respect to the residual function Φ. Thus, a three-point bending test simulated by finite element with a mesh-size of h = 0.25 mm was used to calibratem.The residual Φ was computed for the exact material properties for different value ofm. Fig. 7 plots Φ as afunction ofm. It can be seen that Φ is large form ≥ 2, gets smaller for the next values and is the smallestform = 7. Then, Φ increases for the next two values. This kind of non stabilized behavior has been shownin [Diehl et al., 2016]. Therefore,m = 7 was used in the sequel to extract the material properties (K,G)using the algorithm presented in Fig. 6. Note that this is not a convergence study but only a simplistic wayto choose the horizon δ.

Table 1: Software used for the implementation of the state-based PD-VFM.
Name Version Reference
NOMAD 3.8 [Le Digabel, 2011]
PeriPyDIC 0.1 [Delorme et al., 2018]
PeriPyVFM 0.1 [Delorme and Diehl, 2018]

1 2 3 4 5 6 7 8 9 10
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Figure 7: ResidualΦ for the differentm-values with h = 0.25mm. The objective of this simplistic analysis isto find the bestm-value to use in the PDmodel in order to obtain the smallest residualΦ for the prescribedmesh-size.
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6 Numerical validation

6.1 Actual displacements simulated by Finite Element Analysis
The virtual three-point bending test presented in Fig. 4 was modelled in finite element analysis (FEA) withANSYS®. The setup size parameters were: L = 128mm, W = 32mm, t = 12.7mm and S = 96mm.The geometry was discretized using the PLANE182 2-D Structural Solid element with a mapped meshing of
h = 0.25mm. The element was used as a plane stress element and was defined by four nodes having twotranslations at each node in e1 and e2 directions. A null displacement condition was applied to the nodeslocated on the two supports and the beam was loaded with a force of magnitude F of 1 000N appliedto node A shown in Fig. 4. The Young’s modulus E was of 4 000MPa and the Poisson’s ratio ν of 0.3,which yields a bulk modulusK = 3 333.33MPa and a shear modulusG = 1 538.46MPa. Figs. 8a and 8brespectively show the components u1 and u2 for the simulated displacement field ûFEA.
6.2 Extracted material properties using the displacement field
The displacement field ûFEA was input in the algorithm described in Sec. 5 to identify the material prop-erties. The search interval for the sought (K,G) was I = [1 000; 10 000]

2. This interval includes theentered valuesK = 3 333.33MPa and G = 1 538.46MPa. Based on Eq. (31), the external virtual works
wereW?(1)

ext = 48 000Nmm andW?(2)
ext = 0Nmm. The extracted material properties are presented inTable 2.

(a) u1-component of the displacement field ûFEA.

(b) u2-component of the displacement field ûFEA.
Figure 8: Components u1 (a) and u2 (b) of the simulated displacement field ûFEA.
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When the initial guesses for K and G were exactly in the mid of the search interval I , i.e. (K;G) =
(5 000; 5 000), the relative errors with respect to the material properties fed in the FEMwere εK = 0.63%for the bulk modulus and εG = −0.44% for the shear modulus. The extracted properties using the state-based PD-VFM are in good agreement with those utilized in the FEA.
Theminimization was run 14more times with different initial guesses distributed within the search intervalto investigate the method’s robustness and stability. Table 2 gathers the results and shows that all theextracted material properties converge to the same values (they only differ for the fourth decimal point),even though the number of evaluations was different. Therefore, theminimization of the residualΦ seemsto be stable and means that exactly one global minimum must exist within the search interval.
6.3 Noise analysis
The actual displacement field ûFEA used to identify the properties was optimal with respect to bias andnoise as this is a simulated field. Thus, the slight differences between the actual material properties fedin the FEM and those extracted could be attributed to several sources such as the error induced with thediscretization scheme, the so-called PD surface effect [Le and Bobaru, 2017], the numerical round off errorsor the virtual field chosen which can be more or less sensitive to the previous errors effects [Pierron andGrédiac, 2012].
Real displacement fields are disturbed both by bias and noise [Sutton et al., 2009]. Contrary to the DICbias that can be reduced or eliminated with a proper setup and parameters (good calibration, no contami-nation or dust, no aliasing), the noise is unavoidable even though it can be minimized with a careful setup(good focus and speckle pattern, contrast, lighting, stereo-angle, lens selection). A noise analysis simulatingexperimental data was performed by adding a Gaussian noise term to disturb ûFEA as{

ûNOISE = ûFEA + gNOISE (32a)
gNOISE = g1 · e1 + g2 · e2 (32b)

where gNOISE is the disturbing displacement vector whose components g1 and g2 follow a Gaussian distri-bution of mean µ and standard deviation Σ. It was assumed that µ = 0.0 mm, and Σ lied between 0.0and 2.5× 10−4 mmwhich is a typical standard deviation range measured with the DIC-system used in theLaboratory for Multiscale Mechanics (LM2).
Table 2: Extracted material properties from ûFEA. 15 initial guesses (K;G) ∈ [1 000; 10 000]

2 were usedand provided in the second and third columns. The fourth and fifth columns represent the extracted ma-terial properties after minimization. The sixth and seventh columns show the relative error with respect tothe material properties used in the FEA, which are (K;G) = (3 333.33; 1 538.46). The last column showsthe number of evaluations performed with the NOMAD solver.
Initial guesses Minimization results Relative error

# K (MPa) G (MPa) K (MPa) G (MPa) εK (%) εG (%) Eval
1 5 000.000 5 000.000 3 354.194 1 531.635 0.63 −0.44 4352 1 098.722 7 031.443 3 354.194 1 531.635 0.63 −0.44 5083 2 495.136 6 502.603 3 354.194 1 531.635 0.63 −0.44 4934 9 845.479 1 797.806 3 354.194 1 531.635 0.63 −0.44 5095 1 858.444 9 782.045 3 354.194 1 531.635 0.63 −0.44 5326 4 334.080 5 263.272 3 354.194 1 531.635 0.63 −0.44 5107 6 410.611 3 680.783 3 354.194 1 531.635 0.63 −0.44 4508 9 881.218 2 116.642 3 354.194 1 531.635 0.63 −0.44 3909 8 723.166 7 719.498 3 354.194 1 531.635 0.63 −0.44 42710 3 718.518 6 977.810 3 354.194 1 531.635 0.63 −0.44 43111 8 486.055 9 008.744 3 354.194 1 531.635 0.63 −0.44 54112 3 396.443 6 769.252 3 354.194 1 531.635 0.63 −0.44 53813 5 543.759 3 163.586 3 354.194 1 531.635 0.63 −0.44 51514 5 723.661 6 488.884 3 354.194 1 531.635 0.63 −0.44 43515 4 612.369 1 874.837 3 354.194 1 531.635 0.63 −0.44 543
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Table 3 provides the extractedmaterial properties after adding Gaussian noise. The relative error remainedunder 1.4% in absolute value. Therefore, the virtual fields chosen seem stable with respect to noise. Thiscould be different with other virtual fields. Also, it should be noted that the bulk modulus K is moresensitive to Gaussian noise than the shear modulus G. The conclusion from this noise analysis is similarthat presented in [Kramer and Scherzinger, 2014], in which the VFM is applied within CCM.
6.4 Missing data
Obtaining displacement fields on the exact specimen edges is hardly possible with DIC and the missingdata due to this experimental limitation could have a significant influence on the identification results,depending the the virtual fields chosen [Pierron and Grédiac, 2012]. Lines of elements that were placed ofa multiple of h = 0.25mm have been removed from the specimen’s edges (see Fig. 9) before extractingthe material properties to simulate the effect of the missing data.
Fig. 10 presents the effects of these missing nodes on the residual Φ. A linear relation can be highlighted,showing the necessity to obtain data as close as possible to the free edges to accurately extract thematerialproperties. Table 4 provides the error in the identification of K and G, showing that the relative errorsquickly increase for the bulk modulus K. This means the identification of K is more sensitive to missingdata than the shear modulus G using the three-point bending experimental setup and the virtual fieldsdefined in Eqs. (27) and (28).

7 Conclusion
The main contributions of this study are as follows:

1. The VFMwithin PD has been derived to extract the elastic properties of a linearly isotropic material.Open-source python codes [Delorme and Diehl, 2018,Delorme et al., 2018] including a minimizationprocess have also developed to implement the PD-VFM. Contrary to most other approaches existingin the PD literature, one of the benefits of the PD-VFM is that no computation of the displacementfield during the minimization process is required.
2. The PD-VFM has been tested on a three-point bending test using undisturbed displacement fields

Table 3: Error in the identification ofK and G due to Gaussian noise. The first column is the noise’s stan-dard deviation Σ used. The second and third columns represent the extracted material properties afterminimization. The fourth and fifth columns show the relative error with respect to the material propertiesuse in the FEA, which are (K;G) = (3 333.33; 1 538.46)

Standard Deviation Minimization results Relative error
Σ (mm) K (MPa) G (MPa) εK (%) εG (%)

0.0× 10−4 3 354.194 1 531.635 0.63 −0.44
0.5× 10−4 3 347.890 1 531.918 0.44 −0.43
1.0× 10−4 3 379.440 1 531.790 1.38 −0.43
1.5× 10−4 3 339.325 1 531.485 0.18 −0.45
2.0× 10−4 3 323.665 1 532.692 −0.29 −0.37
2.5× 10−4 3 364.742 1 533.479 0.94 −0.32

Missing nodeh

Figure 9: Missing nodes all around the specimen’s edges [Delorme, 2018b].
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generated by FEA and two independent virtual fields arbitrarily chosen. The material propertiesextracted with the PD-VFM were in a quasi-perfect agreement with those utilized in the FEA. Thisnumerical validation of the PD-VFM shows the robustness of the approach. Both the stability andthe sensibility against noise and missing data have also been studied. The latter highlighted a linearrelation between these missing data and the residual Φ, showing the necessity to obtain data asclose as possible to the free edge to accurately extract the material properties.
Even though the numerical validation of the PD-VFM led to remarkable results, meaning thematerial prop-erties identification within less than 0.75% error, there is still a scope for enhancing the solver performanceand reduce the calculation time. Also, the authors tried to apply the PD-VFM to experimental DIC mea-surements performed on a polycarbonate beam under a three-point bending test. However, the residual
Φ computed using the actual material properties (measured per ASTM D638-14) was too high and then didnot allow to extract the material properties. This can be explained by the difficulty of reducing the missingdata due to the DICmeasurements and the high sensibility of the bulkmodulusK with respect to this miss-ing information and virtual fields chosen. Based on the full-field measurement literature [Belhabib et al.,2008,Pierron and Grédiac, 2012], the authors would recommend to design a well-suited test configurationfor the PD-VFM that would meets the following criteria:
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Figure 10: Influence of missing data: the black line shows the linear regression between the residualΦwithrespect to the missing distance around the specimen.
Table 4: Error in the identification of K and G due to the missing data on the specimen free edges. Thefirst column is the missing distance on the edge (see Fig. 9). The second and third columns represent theextractedmaterial properties after minimization. The fourth and fifth columns show the relative error withrespect to the material properties used in the FEA, which are (K;G) = (3 333.33; 1 538.46)

Missing distance Minimization results Relative error
mm K (MPa) G (MPa) εK (%) εG (%)
0.00 3 354.194 1 531.635 0.63 −0.44
0.25 3 577.209 1 552.676 7.32 0.92
0.50 3 708.762 1 565.134 11.26 1.73
0.75 3 853.462 1 578.672 15.60 2.61
1.00 4 011.848 1 593.237 20.36 3.56
1.25 4 184.931 1 608.811 25.55 4.57
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• a large heterogeneity of the displacement fields. This is the spirit of the full-fieldmeasurementmeth-ods, by opposition to standardmechanical tests that are based on homogeneous and averaged fields;
• a good sensitivity of the displacement fields with respect to the material properties to identify.

The authors also point out that they were only interested in this study to present a proof of concept of thePD-VFM by extracting the elastic properties of a linearly isotropic material. However, they believe that fu-tureworks could use the approach presented through this paper and extend it for damage characterization,which is the main strength of PD.

A Isotropic elastic materials within state-based peridynamics

A.1 Elastic material
An elastic material is defined by its free energy density ψ which only depends onY. Define ψ = Ψ(Y) asthe strain energy density. Then, the force stateT is defined by

T = T(Y) =
∂ψ

∂Y
=

dΨ

dY
= OΨ(Y). (33)

A.2 Isotropy
A material is isotropic if and only if, for any proper orthogonal second-order tensorQ

T(YQ) 〈ξ〉 = T(Y) 〈Qξ〉 . (34)
Physically, Eq. (34) reflects the fact that the force state is invariant by applying rotations before deforma-tions.
A.3 Isotropic elastic solid
Let ϑ be a non-local volume dilatation [Silling and Lehoucq, 2010,Le et al., 2014,Sarego et al., 2016,Le andBobaru, 2017] such as

ϑ(e) =
%

q
(w x) • e (35)

w is the scalar influence state used to weight the bonds influence on the force state calculation and x =
|X 〈ξ〉| = ‖ξ‖2. q is the weighted volume such as

q = (w x) • x (36)

% =


3 in 3D
2

(
2ν − 1

ν − 1

)
in 2D plane stress

2 in 2D plane strain
(37)

ν is the Poisson’s ratio. Finally, e is the scalar extension state defined by
e = |Y 〈ξ〉 | − x = y − x. (38)

The scalar extension state can be divided into a spherical part es and a deviatoric part ed such as
e = es + ed =

x

3
ϑ(e) + ed. (39)

The spherical part represents the isotropic expansion while the deviatoric part depicts shear deforma-tions.
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Suppose an isotropic elastic material defined by its strain energy density Ψ

Ψ(e) =
1

2
αs (w es) • es +

1

2
αd (w ed) • ed (40)

whereαs andαd are the PD paremeters [Delorme et al., 2017]. They are calibrated to the classical isotropicelastic material properties (K andG, the bulk and shearmodulus) by equating the PD strain energy density
Ψ to the classical strain energy density for an arbitrary homogeneous deformation under the infinitesimalstrain theory [Silling et al., 2007]. One finds [Le et al., 2014,Sarego et al., 2016,Le and Bobaru, 2017,Delormeet al., 2017] that the PD parameters are:

αs =



1

q
(9K) in 3D

1

q

[
9K +G

(
ν + 1

2ν − 1

)2
]

in 2D plane stress
1

q
(9K +G) in 2D plane strain

(41)

αd =


1

q
(15G) in 3D

1

q
(8G) in 2D plane stress or plane strain (42)

The calibration above also assumes that the material points have a complete neighborhood of size 2δ (i.e.
H = Hx) filled with the same material. This assumption is not verified within a distance of δ next to afree surface or an interface with another materials and implies that Eqs. (41) and (42) are no more validnear boundaries. A corrective approach, called force normalization, was devised to account for that phe-nomenon [Macek and Silling, 2007].
From Eqs. (38), (35), (39) and (40), one obtains:

∆e = ∆es + ∆ed (43a)

∆ϑ(e) =
%

q
(w x) • ∆e+ o(||∆e||) (43b)

∆es(e) =
x

3

%

q
(w x) • ∆e+ o(||∆e||) (43c)

∆ed(e) =

[
1− x

3

%

q
(w x)

]
• ∆e+ o(||∆e||) (43d)

∆Ψ(e) = αs (w es) •∆es + αd (w ed) •∆ed + o(||∆e||) (43e)
where ∆ represents an increment of the function of state resulting from an incremental change to thescalar extension state∆e. This incremental change to the scalar extension state is related to the incremen-tal change to the deformation state ∆Y as follows

∆e =
Y

|Y|
∆Y + o(‖∆Y‖) = M∆Y + o(‖∆Y‖). (44)

Thus, combining Eqs (38), (33), (43) and (44) leads to the constitutive model of an isotropic elastic materialgiven by the force state
T(Y) =

{
1

3

(
%αs − (3− %)αd

)
w es + αd w ed

}
M. (45)

Eq. (45) shows that the constitutive model of an isotropic elastic material corresponds to an ordinary ma-terial sinceT = tM.
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