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Abstract 19 

Computational modeling, such as finite element analysis, is employed in a range of biomechanics 20 

specialties, including impact biomechanics and surgical planning. These models rely on accurate material 21 

properties for skeletal muscle, which comprises roughly 40% of the human body. Due to surrounding 22 

tissues, compressed skeletal muscle in vivo likely experiences a semi-confined state. Nearly all previous 23 

studies investigating passively compressed muscle at the tissue level have focused on muscle in 24 

unconfined compression. The goals of this study were to (1) examine the stiffness and time-dependent 25 

material properties of skeletal muscle subjected to both confined and unconfined compression (2) develop 26 

a model that captures passive muscle mechanics under both conditions and (3) determine the extent to 27 

which different assumptions of volumetric behavior affect model results. Muscle in confined compression 28 

exhibited stiffer behavior, agreeing with previous assumptions of near-incompressibility. Stress relaxation 29 

was found to be faster under unconfined compression, suggesting there may be different mechanisms that 30 

support load these two conditions. Finite element calibration was achieved through nonlinear optimization 31 

(normalized root mean square error <6%) and model validation was strong (normalized root mean square 32 

error <17%). Comparisons to commonly employed assumptions of bulk behavior showed that a simple 33 

one parameter approach does not accurately simulate confined compression. We thus recommend the use 34 

of a properly calibrated, nonlinear bulk constitutive model for modeling of skeletal muscle in vivo. Future 35 

work to determine mechanisms of passive muscle stiffness would enhance the efforts presented here.  36 



1 Introduction  37 

Skeletal muscle comprises approximately 40% of the mass of the human body [1]. Computational modeling 38 

of passive skeletal muscle is thus essential to simulations of impact biomechanics [2]–[8], rehabilitation 39 

engineering [9], [10], surgical planning [11], [12], and bed sore development [9], [13]. These models rely 40 

on accurate material properties for skeletal muscle, which have been shown to be anisotropic [14], [15], 41 

time dependent [3]–[5], [16], [17], non-linear [3], [17], and asymmetric in regards to tension and 42 

compression [18], [19]. However, the compressive behavior of skeletal muscle is not fully understood, 43 

particularly regarding the differences in muscle response to in vivo loading conditions [3]–[5], [20].  44 

It is likely that in vivo muscle experiences a variation between confined and unconfined volumetric 45 

boundary conditions [3]–[5], [21], where semi-confinement is created by tissues surrounding the muscle. 46 

Nearly all previous studies investigating passively compressed muscle at the tissue level have focused on 47 

muscle in unconfined compression (UC) [3]–[5], [22]–[24], where the sample is free to expand laterally 48 

when loaded. One group has investigated muscle under anisotropic semi-confined compression, and the 49 

specific confinement was found to affect both muscle structural deformation and mechanical response [14], 50 

[15]. Traditionally, muscle has been modelled as a nearly incompressible hyperelastic material [14], [24]–51 

[26].  However, to the best of the authors’ knowledge, there have been no investigations of skeletal muscle 52 

in fully confined compression (CC), where volumetric strain is applied and the assumption of near 53 

incompressibility can be directly tested. This gap in understanding the effects of volumetric boundary 54 

conditions (UC and CC) on the compressive properties of skeletal muscle affect the subsequent models 55 

derived to predict skeletal muscle and whole body behavior.   56 

The time dependent nature of muscle can be observed in significant stress relaxation following compressive 57 

deformation [3]–[5], [16], [17]. Stress relaxation tests have been thus used extensively to characterize the 58 

stress-strain and stress-time behavior of the tissue, and are typically accompanied by various viscoelastic 59 

modelling approaches [3], [4], [17], [27]–[29]. Inverse finite element methods are effective in determining 60 

material properties through parameter optimization to experimental data [27], [30]–[32]. In previous 61 



continuum mechanics based modeling of skeletal muscle, the assumption of near incompressibility leads to 62 

a decoupling of the volumetric (volume changing) and isochoric (shape changing) responses of the 63 

hyperelastic model [23], [33]. We developed a non-linear hyper-viscoelastic finite element model to 64 

simulate both UC and CC testing conditions concurrently that was calibrated using inverse finite element 65 

analysis through a nonlinear optimization protocol. This model was then used to investigate various 66 

assumptions about muscle compressibility, and what the most appropriate modelling approaches may be 67 

for passively compressed skeletal muscle. 68 

The goals of this study were to (1) examine the stiffness and time-dependent material properties of skeletal 69 

muscle subjected to two boundary conditions (UC and CC) (2) develop a computational model that captures 70 

the behavior of muscle subject to these different volumetric boundary conditions and (3) determine the 71 

extent to which different assumptions of volumetric behavior affect model results. We hypothesize that the 72 

material properties of skeletal muscle differs in confined versus unconfined compression. Since in vivo 73 

muscle behavior is likely to be semi-confined, we also believe that by considering both conditions we 74 

improve the accuracy of finite element models of skeletal muscle. 75 

 76 

2 Methods  77 

2.1 Sample Preparation  78 

Whole tibialis anterior (TA) muscles were isolated from seven female porcine hind limbs following 79 

sacrifice [14], [15], [23], [24], [26], [34]. Participants did not handle live animals as all tissue was acquired 80 

from a local abattoir. Connective tissues and fat were removed from TA using standard dissection 81 

instruments. Two sample geometries were identified for experimentation in this study: transverse oriented 82 

cuboids for UC and transverse cylindrical plugs for CC. The cuboids (height = 7.2 ± 0.9 mm, cross-sectional 83 

area=149.6±25.7 mm2, n = 15 for fast compression and n = 14 for slow compression) [14] were acquired 84 

using scalpels and a custom tissue slicer. Sample height was measured via micrometer and area was 85 



calculated through image analysis prior to testing. The cylindrical plugs (height = 7.1 ± 0.6 mm, n = 16 for 86 

fast compression and n = 15 for slow compression) were obtained using metal hole punch (ø = 10mm) and 87 

scalpels. Since passive skeletal muscle is an incredibly soft tissue, using a larger metal punch ensured that 88 

the sample tightly fit into the compression well. Four to five cuboids and cylindrical plugs were excised 89 

from each muscle and the samples were not paired between unconfined and confined compression. All 90 

samples were taken from muscle midbelly and were kept hydrated by phosphate buffered saline throughout 91 

testing [24], [26], [34]. To limit effects of rigor mortis, all testing was completed within eight hours of 92 

sacrifice [3]–[5], [17], [29], [35]. Tissue damage was controlled at two points in experimental protocol. 93 

Firstly, during dissection, a custom slicer and high-profile histology blades or surgical scalpels were used 94 

to cut the sample as few times as possible. Secondly, after each UC and CC tests, the sample was visually 95 

checked for damage, and any damaged sample was discarded. 96 

 97 

2.2 Experimentation  98 

Custom instrumentation was fabricated to perform UC and CC using a uniaxial tabletop Instron 3366 tensile 99 

testing system. A lightweight delrin top and a fixed stainless steel bottom platen were used for UC testing 100 

(Figure 1A). An Al2O3 porous plunger (diameter = 6.4 mm, length = 25.5 mm) was used along with an 101 

impermeable steel well (diameter = 6.9 mm, depth = 8 mm) for CC (Figure 1B). 102 



 103 

Figure 1: Schematics showing experimental set up for (A) unconfined compression and (B) confined 104 

compression. Associated finite element geometry and boundary conditions for (C) unconfined compression 105 

and (D) confined compression. Unconfined finite element geometry used quarter symmetry and confined 106 

geometry used axisymmetric.  107 

Two stress relaxation testing conditions were employed for both UC and CC conditions: fast and slow 108 

compression stress relaxation [5], [29], [36]. All tests were completed under transverse compression to 109 

simulate the most common uniaxial physiological loading orientation [15], [22], [23], [34], [37]. For UC, 110 

all samples were strained to 40% compressive nominal strain at either 40% s-1 (fast compression, n=15) or 111 

5% s-1 (slow compression, n=14) [15], [38], [39]. For CC, all samples were strained to 15% compressive 112 

nominal strain at either 15% s-1 (fast compression, n=16) or 1.5% s-1 (slow compression, n=15). All samples 113 

were subject to a 400 seconds stress-relaxation hold [4]. Data was acquired by either a 10N or 100N Instron 114 

load cell (2350 series) at 100 Hz. Time (seconds), extension (mm), and load (Newtons) were recorded. All 115 

model calibration (determination of model parameters) was completed with fast-compression data, while 116 

slow-compression data were only used for model validation. 117 



 118 

2.3 Data Analysis and Viscoelastic Modelling  119 

First Piola-Kirchhoff (PK) stress 𝑃, nominal strain 𝜀, and peak stress were determined through original 120 

specimen dimensions (Equation 1, where 𝐹 is the measured load and 𝐴𝑜 is the original specimen cross-121 

sectional area) [17], [28]. Peak modulus (𝑃𝑝𝑒𝑎𝑘 𝜀𝑝𝑒𝑎𝑘⁄ ) was also calculated. Three relaxation ratios (1-5s, 122 

6-105s, 106-400s) were determined to evaluate the amount of relaxation associated with various relaxation 123 

times (Equation 2, where 𝑅𝑅 is the relaxation ratio and 𝑃𝑖 and 𝑃𝑗 are the first PK stress at time points 𝑖 and 124 

𝑗) [29]. These three time periods were chosen as they generally characterized “short”, “medium”, and “long” 125 

term relaxation for the samples tested in this study, and are similar to time periods previously used for 126 

skeletal muscle in tension [29]. 127 

𝑃 =
𝐹

𝐴0
             (1) 128 

𝑅𝑅 =
𝑃𝑖−𝑃𝑗

𝑃𝑖
       (2) 129 

To more finely characterize relaxation behavior, a three term Prony series quasi-linear viscoelastic model 130 

(Equations 3-4) was fit to normalized hold phase stress from all testing groups [17], [28], [39]–[41]. 131 

𝑃(𝜀, 𝑡) = ∫ 𝐸(𝑡 − 𝜏) 
𝑑𝜀(𝜉)

𝑑𝜉
𝑑𝜉

𝑡

0
               (3) 132 

𝐸(𝑡) = 𝐸0(1 − ∑ 𝐸𝑖 [1 − exp (−
𝑡

𝑖
)])3

𝑖=1          (4) 133 

Here stress 𝑃 is calculated from the convolution integral (Equation 3), which includes the Prony series 134 

reduced relaxation function 𝐸(𝑡), nominal strain 𝜀, and an integration parameter 𝜉. This includes three 135 

relaxation coefficients 𝐸𝑖 , three time constants 𝑖, and the instantaneous modulus 𝐸0. As the purpose of this 136 

analysis was to compare relaxation behavior only, 𝐸0 = 1 was fixed and all data were normalized. The 137 

model also accounted for the experimental overshoot in strain applied by the Instron during fast 138 

compression. Parameter determination was performed in two steps: a Monte Carlo simulation followed by 139 



a nonlinear least-squares deterministic optimization (lsqnonlin in MATLAB) [27], [28], [30], [42]–[45]. In 140 

the Monte Carlo simulation, the six parameters ( 𝐸1−3 and 𝜏1−3) were randomly varied for 100,000 141 

simulations, ensuring 0 < 𝐸1 + 𝐸2 + 𝐸3 < 1 [30]. The set of parameters minimizing percent error between 142 

normalized model and experimental hold stress was used as initial guesses for the deterministic 143 

optimization, which optimized percent difference between normalized model and experimental hold 144 

stresses. This approach used the global stochastic Monte Carlo method in conjunction with the precision of 145 

a local deterministic approach. All modelling was performed in MATLAB (The Mathworks, Inc.). 146 

 147 

2.4 Finite Element Modelling  148 

Two finite element models of UC and CC geometries were developed and simulated with an implicit finite 149 

element approach in Abaqus/Standard (Dassault Systèmes). (Figure 1C-D). The UC geometry was reduced 150 

to a quarter of the sample by symmetry, with 175 first-order 8-node hexahedral elements with a cubic 151 

volume of 1 mm3 (type C3D8RH). This model was compressed by coupling the top surface to a reference 152 

node and displacing the node to follow experimental displacement. The reaction force on the reference 153 

point was divided by initial area to acquire first Piola-Kirchhoff stress. The CC geometry was reduced to a 154 

two-dimensional axisymmetric model of cylinder with 96 first-order 4-node quadrilateral elements with a 155 

rectangular area of 3.75 mm2 (type CAX4RH). A convergence study was performed by doubling and 156 

halving the mesh densities, and the model outputs were virtually identical to the outputs of the original 157 

models. Displacement was prescribed for top surface and as no lateral expansion occurred, first Piola-158 

Kirchhoff stress was determined directly from model axial stress. Displacements in both fast compression 159 

models simulated the slight experimental overshoot applied by the Instron. Four boundary conditions were 160 

applied to the UC model to ensure quarter symmetry while leaving exposed faces to expand due to the 161 

Poisson effect (Figure 1C). Since very little sample sliding was noticed during pilot testing or 162 

experimentation, sliding was not controlled and was not included in any of the models. An axisymmetric 163 

rectangular model was developed to simulate the cylindrical CC testing geometry with restricted exterior 164 



faces to simulate the impermeable steel well (Figure 1D). Any initial lateral pressure exerted by the walls 165 

of the CC well during insertion and prior to loading were small compared to the loading experienced by the 166 

sample during tests. Thus, it was deemed appropriate to model the CC well as a fixed boundary with no 167 

pre-stress. 168 

A quasi-linear hyper-viscoelastic material formulation was chosen to model the behavior of skeletal muscle 169 

subject to both CC and UC [3], [23], [26], [38]. The model utilized a Yeoh form [41] of a polynomial 170 

hyperelastic strain energy density function Ψ(𝐂) (Equation 5). The initial shear modulus 𝐺0 and bulk 171 

modulus 𝐾0 are given according to the 𝑁 = 1 hyperelastic material parameters (Equation 6) [38], [41]. 172 

Ψ(𝐂) = ∑ 𝐶𝑖0
3
𝑖=1 (𝐼1̅ − 3)𝑖 + ∑

1

𝐷𝑖

2
𝑖=1 (𝐽 − 1)2𝑖                                (5) 173 

𝐺0 = 2C10, 𝐾0 =
2

𝐷1
     (6) 174 

Here 𝐶𝑖0 and 𝐷𝑖 are material parameters that characterize the isochoric and volumetric responses, 175 

respectively. 𝐼1̅ is defined as 𝐼1̅ = 𝜆̅1 + 𝜆̅2 + 𝜆̅3 where 𝜆̅𝑖 = 𝐽−
1

3 𝜆𝑖 (𝜆𝑖 are the principle stretches), and 𝐽 is 176 

the volume ratio. Due to the nonlinearity of the stress-strain curves for UC and CC data, three 𝐶𝑖0 terms 177 

and two 𝐷𝑖 terms were used. A Prony series viscoelastic model (Equation 7) was applied to the decoupled 178 

responses in Equation 4. Here 𝐾(𝜏) is the time dependent bulk modulus and 𝐺(𝜏) is the time dependent 179 

shear modulus. 𝐾∞ and 𝐺∞ model long-term bulk and shear moduli, respectively. 𝜏𝑖
𝐾 and 𝜏𝑖

𝐺 are time 180 

constants (𝜏1
𝐺 = 𝜏1

𝐾 = 0.05𝑠, 𝜏2
𝐺 = 𝜏2

𝐾 = 1𝑠, 𝜏3
𝐺 = 𝜏3

𝐾 = 20𝑠, 𝜏4
𝐺 = 𝜏4

𝐾 = 400𝑠) [17], [28], [30], [46]–181 

[48] 182 

  𝐾(𝜏) = 𝐾∞ + ∑ 𝐾𝑖𝑒
−

𝜏

𝜏𝑖
𝐾4

𝑖=1      𝐺(𝜏) = 𝐺∞ + ∑ 𝐺𝑖𝑒
−

𝜏

𝜏𝑖
𝐺4

𝑖=1                      (7) 183 

The finite element model consisted of thirteen parameters (five hyperelastic, eight viscoelastic). Model 184 

calibration (determination of parameters) was again achieved in two steps: a Monte Carlo simulation 185 

followed by a nonlinear least-squares deterministic optimization (lsqnonlin in MATLAB) [27], [28], [30], 186 



[42]–[45]. For computational efficiency, the Monte Carlo simulation made 5000 random guesses for the 187 

eight viscoelastic parameters (all hyperelastic parameters set to 1) and the error function (Equation 8) was 188 

used to calculate the weighted difference between normalized model and experimental fast-compression 189 

stress relaxation data for both UC and CC models simultaneously. This function assigns greater weight 190 

around the peak region where there are fewer time points, thus improving the fit throughout the optimization 191 

procedure. The set of bulk-viscoelastic parameters minimizing the CC error and set of shear-viscoelastic 192 

parameters minimizing UC error were used as initial guesses for the deterministic optimization. Initial 193 

guesses for all hyperelastic parameters were set to a value of one. Following calibration, UC and CC slow-194 

compression data were predicted by this optimized model as a means of validation. Due to the simple and 195 

symmetric model geometries in this work, mesh convergence analysis showed virtually no difference in 196 

model behavior as a function of element size. 197 

𝑒𝑟𝑟𝑜𝑟 = ∑ 𝑡 ∗ (𝑃𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑒𝑥𝑝)
𝑡𝑝𝑒𝑎𝑘 

𝑡=0 + ∑
(𝑃𝑚𝑜𝑑𝑒𝑙−𝑃𝑒𝑥𝑝)

𝑡
401
𝑡=𝑡𝑝𝑒𝑎𝑘

                              (8) 198 

A second set of UC and CC finite element models with the same constitutive formulation were calibrated 199 

using only the UC fast compression data. This is to reflect the approach of assuming near-incompressibility 200 

with a single-parameter bulk hyperelastic term, as is most common in finite element models of skeletal 201 

muscle [23], [25], [33], [49], [50]. The volumetric parameters (𝐷𝑖) were assumed to be three, four, and five 202 

orders of magnitude larger than the isochoric parameters (𝐶𝑖0) to reflect a range of assumptions. The time 203 

dependent bulk (𝐾𝑖) and shear (𝐺𝑖) moduli were assumed to the same. This model represents the typical 204 

approach for finite element modeling of skeletal muscle and was later used to predict the CC fast 205 

compression data. 206 

Finally, a semi-confined compression model (SC) was developed by surrounding the quarter-brick UC 207 

model with a generic linear elastic material to create a quarter disk (Figure 2A). The outer boundary of this 208 

disk was restricted laterally, thus while the whole structure was subject to confined compression, 209 

modulating the Young’s modulus of this outer material enabled a semi-confined state for the muscle 210 



geometry. This modulation then enabled the simulation of a transition from unconfined (Figure to 2B) to 211 

confined (Figure 2C) compression during a 40% compressive strain ramp to mimic the UC model strain. 212 

As the Young’s Modulus of the disk was varied, the SC model stress and volume ratio from the peak were 213 

recorded. This parametric analysis was performed for the optimized parameters and parameters acquired 214 

from the three models calibrated using UC fast compression data. 215 

 216 

Figure 2: Finite element geometry and boundary conditions of semiconfined compression. The muscle 217 

component used the same unconfined quarter brick employing symmetry. The surrounding material 218 

completes a quarter-disk of the same height (7 mm) and a radius of 20 mm. 219 

To investigate the variability of the experimental data collected, the finite element model was fit to the 220 

upper and lower bounds of the standard deviation curves. In short, the full model optimized parameters 221 

were scaled up or down to match experimental data in four additional cases: both UC and CC plus one 222 

standard deviation (UC+/CC+), both UC and CC minus one standard deviation (UC-/CC-), and the two 223 

remaining cases with one plus standard deviation and one minus standard deviation( UC+/CC- and UC-224 

/CC+). The resulting parameters provide insight into how the variability of the data presented here affect 225 

the observed incompressibility of passive skeletal muscle. Specifically, the initial Poisson’s ratio 𝜈 was 226 

determined for each case based on the initial shear and bulk moduli (Equation 9) [51]. 227 



𝜈 =
3

𝐾0
𝐺0

−2

6
𝐾0
𝐺0

+2
       (9) 228 

2.5 Statistical Analysis  229 

All statistical comparisons between groups were performed using two-sample two-tailed t-tests, with 230 

significance set to p<0.05. The goodness of fit (GoF) for all fits were evaluated with 231 

the goodnessOfFit function in MATLAB (Equation 10) [30]. Here 𝑃𝑖
𝑚𝑜𝑑 and 𝑃𝑖

𝑒𝑥𝑝
 are the model and 232 

experimental stress values, respectively, at the ith data point and N is the total number of data points. Fits 233 

range from -∞ (worst) to 1 (perfect). The overall percent error, peak stress percent error, and normalized 234 

root mean square error (NRMSE) were also determined (Equation 11) [30]. 235 

𝐺𝑜𝐹 = 1 − ∑ [
𝑃𝑖

𝑚𝑜𝑑−𝑃𝑖
𝑒𝑥𝑝

𝑃𝑖
𝑚𝑜𝑑−𝑚𝑒𝑎𝑛(𝑃𝑖

𝑒𝑥𝑝
)
]2𝑁

𝑖=1                                                  (10) 236 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑃𝑖

𝑚𝑜𝑑−𝑃
𝑖
𝑒𝑥𝑝

)2𝑁
𝑖=1

𝑚𝑒𝑎𝑛(𝑃𝑒𝑥𝑝)
                                                   (11) 237 

 238 

3 Results  239 

Despite lower strain levels, muscle in CC exhibited stiffer behavior than muscle in UC in both fast and slow 240 

compression. Muscle in CC showed ~1200% higher peak modulus (p-value<0.001) (Figures 3-4) (mean 241 

UC fast peak modulus = 0.0524 ± 0.0340 MPa, mean CC fast peak modulus = 1.856 ± 0.908 MPa). Muscle 242 

in CC slow compression exhibited a ~860% higher peak stress than muscle in UC slow compression (p-243 

value<0.001) (Figures 3-4) (mean UC slow peak modulus = 0.041 ± 0.020 MPa, mean CC slow peak 244 

modulus = 1.058 ± 0.623 MPa). 245 



 246 

Figure 3: Average experimental stress relaxation curves with standard deviation for (A) unconfined fast 247 

(solid red) and slow (solid blue) compression, and (B) confined fast (dashed red) and slow (dashed blue) 248 

compression. 249 

 250 

Figure 4: Peak moduli of muscle samples for the four testing conditions and t-test p-values. Unconfined 251 

compression is represented by circles and confined compression by triangles. 252 

 253 

Muscle in CC and UC fast relaxation showed different relaxation behavior (Figure 5A). The three relaxation 254 

ratios (RR1 for 1-5s, RR2 for 6-105s, and RR3 for 106-400s) showed that differences in CC and UC fast 255 

compression time dependence was more apparent at the early stage of relaxation. RR1 for UC 256 



(0.648±0.043) was approximately twice RR1 for CC (0.344±0.191) (p<0.001). RR2 for UC (0.519±0.076) 257 

was larger than RR2 for CC (0.403±0.180) (p=0.029), while RR3 was not different (p=0.521) (Figure 5B). 258 

 259 

Figure 5: (A) Average normalized experimental stress relaxation curves for the hold phase plotted on 260 

logarithmic scales for unconfined (solid red) and confined (dashed red) fast compression. (B) Relaxation 261 

ratios RR1-3 for unconfined and confined fast compression data and t-test p-values. Unconfined 262 

compression is represented by circles and confined compression by triangles. 263 

The global stochastic Monte Carlo simulation in conjunction with the deterministic optimization yielded 264 

excellent fits between the three-term linear Prony series viscoelastic model and normalized experimental 265 

stress data (average percent error = 1.06 ± 0.13%, average NRMSE = 0.016 ± 0.002, average GoF = 0.998 266 

± 0.0002). Comparisons of fast compression viscoelastic parameters showed 𝐸1 for UC (0.902±0.036) was 267 

larger than that for CC (0.604±0.192) (p<0.001), 𝐸2 for UC (0.043±0.015) was smaller than that for CC 268 

(0.103±0.038) (p<0.001), and 𝐸3 for UC (0.033±0.019) was smaller than that for CC (0.141±0.078) 269 

(p<0.001) (Figure 6A). Additionally, 𝜏1 for UC (0.132±0.029 s) was smaller than that for CC (0.331±0.190 270 

s) (p<0.001), 𝜏2 for UC (7.612 ±1.667 s) was smaller than that for CC (12.751±0.427 s) (p<0.001), 271 

and 𝜏3 for UC (96.824±20.134 s) was smaller than that for CC (183.419±90.805 s) (p<0.001) (Figure 6B). 272 



 273 

Figure 6: (A) Relaxation parameters 𝐸1−3 for unconfined and confined fast compression. (B) Time 274 

constants 𝜏1−3 for unconfined and confined fast compression. Unconfined compression is represented by 275 

circles and confined compression by triangles. 276 

 277 

The global stochastic Monte Carlo in conjunction with the deterministic optimization again yielded strong 278 

concurrent fitting between the finite element model and experimental UC and CC fast data (Table 1) (Figure 279 

7A-B). The initial shear and bulk modulus were calculated using the optimized hyperelastic parameters in 280 

Table 2 as 0.0445 kPa and 18.89 kPa, respectively [52]. The model also exhibited very strong predictions 281 

for non-linear ramp and relaxation for the slow compression data for both UC and CC (Table 1) (Figure 282 

7C-D). 283 



 284 

Figure 7: Average fast experimental data with standard deviation, finite element model calibrations, and 285 

fits to the standard deviation curves for (A) unconfined compression (experiment in solid red, model in 286 

solid black) and (B) confined compression (experiment in dashed red, model in solid black). Average 287 

slow experimental data with standard deviation and finite element model predictions for (C) unconfined 288 

compression (experiment in solid blue, model in solid black) and (D) confined compression (experiment 289 

in dashed blue, model in solid black). 290 

Table 1: Overall percent error, peak error, normalized root mean square error (NRMSE), and goodness of 291 

fit (GoF) values for finite element models calibrated to fast unconfined and confined compression data 292 

concurrently and validated against slow unconfined and confined compression data concurrently. 293 

Error Type Model Type UC CC 

Percent error Calibration 3.6% 5.9% 

Validation 12.1% 14.1% 



Peak error Calibration 0.8% -0.4% 

Validation 11.2% 35.4% 

NRMSE Calibration 4.6% 5.6% 

Validation 14.3% 16.8% 

GoF Calibration 0.99 0.96 

Validation 0.88 0.64 

 294 

Table 2: Hyperelastic and viscoelastic parameters of the finite element model calibrated using unconfined 295 

and confined fast compression data concurrently. 296 

Parameter Type Parameter Symbol Parameter Value 

Hyperelastic (MPa) 𝐶10, 𝐶20, 𝐶30 2.23e-05, 1.28e-04, 2.52e-05 

Hyperelastic (MPa-1) 𝐷1, 𝐷2 105.9, 0.839 

Shear Coefficients (-) 𝐺1, 𝐺2, 𝐺3, 𝐺4 0.741, 0.086, 0.093, 0.061 

Bulk Coefficients (-) 𝐾1, 𝐾2, 𝐾3, 𝐾4 0.563, 0.150, 0.108, 0.147 

 297 

The finite element model with the 𝐷𝑖 parameters derived from the 𝐶𝑖0 and the bulk and shear coefficients 298 

equal gave strong fits to the UC data (Table 3). However, these models provided poor predictions for the 299 

CC fast data, specifically missing the non-linear ramp, stiffness, and the relaxation behavior (Figure 8A-300 

B). The peak stress was seen to increase rapidly with decreasing volume ratio for the semiconfined (SC) 301 

model derived from the full optimized parameters (Figure 8C). However, the peak stresses for the three, 302 

four, and five orders of magnitude parameters increased more linearly and were thus comparatively too stiff 303 

at low strains or too soft at high strains (Figure 8C-D). 304 

Table 3: Overall percent error, peak error, normalized root mean square error (NRMSE), and goodness of 305 

fit (GoF) calibration values for finite element models fit with fast unconfined compression data only. 306 

Error Type 3 orders of magnitude 4 orders of 

magnitude 

5 orders of magnitude 

Percent error 5.0% 3.9% 5.1% 

Peak error -9.8% -0.2% 2.7% 

NRMSE 5.8% 4.3% 5.3% 

GoF 0.98 0.99 0.98 

 307 



 308 

Figure 8: Average confined compression fast experimental data with standard deviation (dashed red) and 309 

finite element model predictions (solid gray) for (A) the three, four, and five orders of magnitude 310 

predictions, and (B) adjusted y-axis to show only experiment and three orders prediction. (C) Peak stress 311 

versus volume ratio for semiconfined compression models calibrated using unconfined data only (gray 312 

curves) and semiconfined compression model calibrated using both unconfined and confined compression 313 

data (black squares). (D) The same model results presented in (C) shown at lower strain and stress values. 314 

The four sets of bulk and shear moduli calculated from the four new fits (Figure 7 A and B) show 315 

the spread in the experimentally found moduli values have only a small effect on initial Poisson’s 316 

ratio (Table 4). Even with the variability observed and investigated in this study, muscle exhibited 317 

nearly-incompressible behavior. 318 



Table 4. Normalized root mean square error (NRMSE), initial bulk and shear moduli, bulk-to-shear 319 

modulus ratio, and initial Poisson’s Ratio for the additional four fits to the mean experimental data plus or 320 

minus standard deviation.  321 

Model Type UC 

NRMSE 

CC 

NRMSE 

Bulk 

Modulus 

(kPa) 

Shear 

Modulus 

(kPa) 

Ratio (Bulk 

: Shear) 

Poisson’s 

Ratio 

Mean 4.6% 5.6% 18.89 0.045 423.45 0.499 

UC+/CC+ 5.4% 6.6% 26.70 0.075 355.64 0.499 

UC+/CC- 6.1% 6.2% 10.56 0.014 749.53 0.499 

UC-/CC+ 8.9% 6.6% 10.56 0.078 135.63 0.496 

UC-/CC- 8.8% 6.3% 26.72 0.014 1911.86 0.500 

 322 

4 Discussion  323 

This study aimed to characterize and compare the stress relaxation behavior of skeletal muscle subject to 324 

two volumetric boundary conditions (unconfined compression or UC and confined compression or CC) by 325 

comparing stress relaxation data and computational models. We chose to employ both UC and CC 326 

conditions as in vivo muscle is likely to experience semi-confined compression (SC) where the muscle is 327 

partially restricted by surrounding hard and soft tissues. While previous viscoelastic approaches 328 

successfully modelled stress relaxation of muscle in UC alone [3], [4], this study simultaneously fit stress 329 

relaxation data of muscle in CC and UC, thus providing greater accuracy for the volumetric behavior of 330 

skeletal muscle.  331 

4.1 Experimental Findings 332 

Van Loocke et al. found that muscle exhibited a Cauchy stress of ~4 kPa in UC in cross-fiber direction at 333 

strain of 30% applied at quasi-static rate of 0.05% s-1 [3]. This stress value is comparable to the First Piola-334 

Kirchhoff stress values from UC following relaxation (<5 kPa). Palevski et al. measured the short term and 335 

long-term shear modulus of porcine gluteus muscle in vitro by rapid indentation tests [53]. They found the 336 

shear modulus to be ~700±300 Pa. The hyperelastic finite element model developed in this study yielded a 337 

shear modulus of 445 Pa, which agrees well with these previously published data. A later Van Loocke et 338 



al. study used a non-linear viscoelastic model and found the shear modulus to be 523 Pa, which is also in 339 

close agreement with the shear modulus found in this study [4].  340 

The linear viscoelastic model shows that there is approximately 97% relaxation of muscle instantaneous 341 

modulus associated relaxation (Figure 6) for UC. This finding agrees with the findings of Van Loocke et 342 

al., whose viscoelastic model showed that muscle experiences about 80% relaxation in first 100 seconds of 343 

the hold phase of stress relaxation tests. Wheatley et al. also found that muscle exhibits up to 99% relaxation 344 

in UC at long relaxation times, and also found muscle exhibits initial relaxation of ~75%, which is 345 

consistent with what our viscoelastic model shows (Figure 6) [28]. On the other hand, muscle in CC shows 346 

nearly half of initial relaxation that muscle in UC exhibited (Figure 5). This is supported by statistical 347 

comparisons of viscoelastic parameters (Figure 6). In all, the time dependent behavior of skeletal muscle 348 

has been shown to depend on the loading condition. 349 

Muscle has been known to be ~70-80% incompressible fluid [54] and some studies suggest this fluid plays 350 

a significant role in the mechanical properties of the tissue [55]–[58]. In UC, when muscle is compressed, 351 

fluid is free to redistribute within the tissue while maintaining a nearly constant volume and exude from the 352 

sample from the pores on the lateral sides. Thus, it is unlikely to directly bear a significant portion of the 353 

load, leaving solid muscle constituents such as the extracellular matrix and myofibrils to perhaps resist 354 

compression directly. When load is applied to muscle in CC, the fluid cannot escape laterally, and must 355 

flow through the porous indenter. Fluid could then be retained in interstitial and intracellular space, thus 356 

pressurizing and supporting a greater load than in UC. Since fluid is incompressible, this effect can lead to 357 

drastic differences in observed stiffness between UC and CC such as those observed here. This fluid 358 

pressurization may also contribute the differences in relaxation behavior between UC and CC, as muscle 359 

has been shown to have a non-negligible permeability [57]. However, this hypothesis remains untested and 360 

future work should be completed to directly investigate fluid pressurization’s effect on viscoelastic behavior 361 

of muscle in different loading conditions. 362 



Two sample geometries were identified for experimentation in this study: transverse oriented cuboids for 363 

UC and transverse cylindrical plugs for CC. To minimize tissue damage, high profile histology blades and 364 

surgical scalpels were used for dissection. These geometries, in accordance with previous literature [59], 365 

[60] were used due to the constraints from the experimental apparatus used (Figure 1 A and B). Specifically, 366 

the differences in tissue stiffness and required boundary conditions based on testing condition made using 367 

a single sample geometry between tests unreasonable. While previous work has shown that sample size can 368 

affect the observed compressive modulus of passive skeletal muscle [61] sample size and dimension are 369 

not likely to explain the major differences in compressive stiffness observed in this study. Additionally, the 370 

size of muscle fibers (~50-100 µm) relative to the sample size used here (multiple mm) suggest that the 371 

specimens used in this study are representative of bulk muscle tissue. 372 

While the stress-time data and standard deviation presented here shows that not all samples exhibited 373 

identical passive material properties, this is not uncommon for biological soft tissues and in particular 374 

skeletal muscle [3], [4], [62]. These differences are often explained by natural variability of structure and 375 

content of constituents such as collagen in the extracellular matrix, fiber/fascicle size and organization, and 376 

fluid content from animal to animal and muscle to muscle. Despite the fact that clear and consistent 377 

structure-function mechanisms in passive skeletal muscle are not fully understood, both the extracellular 378 

matrix and muscle fibers are involved in passive load transmission in skeletal muscle [63]–[65]. Other 379 

sources of variability may be tissue hydration, although all samples were stored soaked in phosphate 380 

buffered saline prior to testing to limit this effect. 381 

One limitation of this work is that muscle samples in UC and CC were compressed to different strain levels. 382 

The strain levels of 40% in UC and 15% in CC ensured that enough load was applied to each sample without 383 

damaging the samples. These strain levels were determined through extensive pilot stress-relaxation testing 384 

to investigate strain level and tissue damage. Due to the highly soft nature of passive skeletal muscle under 385 

unconfined compression and the relatively stiff response in confined compression, these two strain levels 386 

gave more comparable data than similar strain levels would. As muscle has been shown be nonlinearly 387 



viscoelastic in unconfined compression, the differences in relaxation behavior may vary somewhat with 388 

strain. However, the major differences in tissue stiffness between testing conditions suggest different 389 

mechanisms that support load under UC and CC. Additionally, the effectiveness of bulk and shear Prony 390 

series viscoelastic terms employed in this study further support the notion of different mechanisms driving 391 

the stiffness and time dependent responses in UC and CC. Future work to test muscle in UC and CC at 392 

different strain levels would further clarify how relaxation behavior depends on strain level under these 393 

conditions. 394 

4.2 Model Findings 395 

Two modeling approaches were used in this study: an analytical linear Prony series viscoelastic model and 396 

an uncoupled Yeoh/Prony hyper-viscoelastic model. Both of these approaches had a similar two-step 397 

optimization method, but each model served a different purpose. The relatively simple viscoelastic 398 

analytical model generated sets of parameters for each individual sample that could be used to compare 399 

relaxation behavior of muscle between unconfined and confined compression. In comparison, the hyper-400 

viscoelastic finite element model was developed to concurrently characterize the behavior of both testing 401 

conditions. Together, these two modeling approaches enabled statistical comparison of testing conditions 402 

as well as comprehensive characterization of tissue stress relaxation behavior. The finite element model 403 

was calibrated using the fast compression data and used to predict the slow compression data as the fast 404 

data encompasses a more comprehensive time dependent data set; this is also a common practice in 405 

viscoelastic modelling [4], [28]. Moreover, the current study aimed to characterize the larger differences 406 

between the testing conditions and not the effect of more specific factors like strain rate, which could be 407 

investigated in future studies. 408 

Blemker et al. used a decoupled strain energy formulation to model the biceps branchii in which the 409 

volumetric or bulk parameter is assumed to be five orders of magnitude larger than the isochoric or shear 410 

parameters [33]. Similarly, Calvo et al. and Grasa et al. take the only volumetric parameter to be between 411 

two and three orders of magnitude larger than the isochoric parameters [25], [66]. In this study we collect 412 



volumetric compression data (CC) and span the assumptions made by Blemker et al. and Calvo et al to 413 

predict the CC data. The predictions are very poor (Figure 8), showing that this simple assumption is not 414 

appropriate for representing the nonlinear stress-strain behavior under highly confined compression. We 415 

present a finite element model in which the volumetric and isochoric responses are concurrently optimized. 416 

Our models still agree that muscle is what would generally be considered to be nearly-incompressible 417 

(initial shear modulus of muscle is ~3 orders of magnitude smaller than initial bulk modulus), but that the 418 

volumetric response is nonlinear as shown by the strong predictions of a two-term volumetric function 419 

(Figure 7). We thus recommend using a higher-order volumetric term to better characterize compressed 420 

muscle. 421 

We believe that in vivo muscle experiences loading that is most similar to semi-confined compression. This 422 

loading could vary between conditions that approach unconfined or confined compression among different 423 

muscles in the body, or even in different regions on the same muscle. This is supported by previous 424 

magnetic resonance imaging of passively stretched human tibialis anterior that observed volumetric strains 425 

as high as 20% in one region and nearly 0% in another [67]. The three models representing literature 426 

methods and the model that we concurrently optimized using UC and CC data provide very different results 427 

for semi-confinement, particularly regarding nonlinearity (Figure 8B). This may be a concern as passive 428 

stiffness nonlinearity could act as a mechanism to prevent damage of bone and other tissues during high 429 

impact loads in vivo. Additionally, the use of a single-term volumetric formulation is likely to be either too 430 

stiff at low volumetric strains or too soft at high volumetric strains. 431 

The study presents a finite element model that can concurrently characterize the unconfined and confined 432 

compression conditions. The modeling and optimization approach employed here fit thirteen hyper-433 

viscoelastic parameters. This number of parameters were used because (1) the ramp phase for both 434 

unconfined and confined compression are highly non-linear (2) muscle specimens relaxed for a four 435 

hundred seconds following compresison at a relatively fast rate (up to 40%/sec), thus enacting a wide range 436 

of time dependence. Future work could reduce the number of optimized or varied parameters by locking 437 



Prony terms or coupling terms together similar to previous work [30]. Alternatively, the model provides 438 

strong predictions and future efforts could combine direction-dependent, contractile, and tensile mechanics 439 

as well to create a more comprehensive model. It has previously been shown that fitting models to average 440 

experimental data yields different parameters than fitting model individually to tests and then averaging the 441 

parameters [68]. Since goal of the study was to characterize the broader differences between the testing 442 

conditions, the authors found it appropriate to only fit the models to averaged data and acquire one set of 443 

parameters. 444 

One limitation of the finite element model provided in this study is that it cannot capture the comprehensive 445 

properties exhibited by passive skeletal muscle such as tension-compression asymmetry, anisotropy, and 446 

contractile properties. It is generally assumed, however, that skeletal muscle is primarily compressed in the 447 

transverse direction in vivo, thus this is the direction of importance when considering in vivo muscle 448 

deformation.  A comprehensive model is likely to have quite a large number of parameters, thus increasing 449 

the model complexity. However, previous studies [30] have explored how parameter coupling can reduce 450 

the number of parameters in a model while still utilizing nonlinear optimization and statistical interpretation 451 

of model results. In the future, this approach could be employed to implement a model that not only 452 

characterizes differences between muscle in unconfined and confined compression but also has other 453 

established properties of skeletal muscle. We also chose not to use a biphasic or poroelastic constitutive 454 

approach in this work because viscoelasticity what is commonly used to characterize skeletal muscle stress 455 

relaxation and is a computationally efficient and stable approach to modeling time dependence. Fluid 456 

pressurization, however, requires the solution of an additional condition (either pressure equilibrium or 457 

conservation of mass of the fluid) and is more unstable at high strain rates. Future studies exploring the 458 

mechanisms involved in tension and compression and could employ mechanistic anisotropic models that 459 

include components such as tension only fibers and saturating fluid. This type of a model would be greatly 460 

beneficial to the field of passive muscle mechanics. 461 

 462 



5 Conclusion  463 

In all, the study found that muscle in CC exhibits stiffer compressive behavior despite lower strains and 464 

muscle in UC exhibits greater and faster relaxation. This study also showed that concurrently fitting 465 

isochoric and volumetric hyper-viscoelastic parameters with these data improves model predictions, and is 466 

recommended for cases where semi-confinement is likely. Future work to better understand the mechanisms 467 

of force transmission in compressed skeletal muscle would greatly benefit the field.  468 
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