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Abstract

We implement an approach using Bayesian inference and machine learning to
calibrate the material parameters of a constitutive model for the superelastic
deformation of NiTi shape memory alloy. We use a diamond-shaped specimen
geometry that is suited to calibrate both tensile and compressive material pa-
rameters from a single test. We adopt the Bayesian inference calibration scheme
to take full-field surface strain measurements obtained using digital image corre-
lation together with global load data as an input for calibration. The calibration
is performed by comparing these two experimental quantities of interest with
the corresponding results from a simulation library built with the superelastic
forward finite element model. We present a machine learning based approach
to enrich the simulation library using a surrogate model. This improves the
calibration accuracy to the extent permitted by the accuracy of the underlying
material model and also improves the computational efficiency. We demonstrate,
verify, and partially validate the calibration results through various examples.
We also demonstrate how the uncertainty in the calibrated superelastic material
parameters can propagate to a subsequent simulation of fatigue loading. This
approach is versatile and can be used to calibrate other models of superelastic
deformation from data obtained using various modalities. This probabilistic
calibration approach can become an integral part of a framework to assess and
communicate the credibility of simulations performed in the design of supere-
lastic NiTi articles such as medical devices. The knowledge obtained from this
calibration approach is most effective when the limitations of the underlying
model and the suitability of the training data used to calibrate the model are
understood and communicated.
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1. Introduction

Simulation of the thermo-mechanical response of Nickel-Titanium (NiTi)
shape memory alloys (SMAs) remains a topic of significant interest in the sci-
entific community and in engineering practice. The reason for scientific interest
in NiTi simulation is due to the challenges posed by the multi-scale microstruc-
ture, highly non-linear and inelastic constitutive response, anisotropy of the
material properties, and the asymmetry in tension vs. compression response.
The engineering interest in NiTi simulation is due to the extensive use of su-
perelastic NiTi in the manufacturing of medical implants and devices and due
to the strong potential of shape memory NiTi as an actuator material in the
aeronautics industry. When computational methods are used to simulate NiTi
response in these fields, a model is typically used to predict either global quanti-
ties of interest such as the radial force of a stent or the actuation load of a spring
actuator, or to obtain local quantities of interest such as the local strain distri-
bution in an implant under physiological boundary conditions. These quantities
of interest are then leveraged for some specific context of use (e.g., as part of
the performance or durability assessment).

As with the broader simulation community, a topic of emerging importance
to NiTi simulation is the necessity to quantify and report the credibility of any
computational modeling that is performed for a specific context of use [1]. Or-
ganizations in both medical device and aeronautics communities recognize that
simulation will play an increasingly prominent role in decision making through-
out the lifecycle of a particular product. They identify credibility assessment
of the models and uncertainty quantification of the simulation results as a key
component of the future development in the simulation practices. Morrison et
al. note that sufficiently-credible computational modeling evidence can act as
a support in the regulatory applications of medical devices [2]. NASA Vision
2040 report specifically incorporates uncertainty quantification as a key focus
area [3].

The simulated response from any computational model is influenced by the
material parameters used as constitutive model inputs. As a consequence, the
credibility of simulation results is affected by the specific values and the uncer-
tainty of the material parameters that are used. The material parameters for
a particular computational model are generally calibrated by comparing exper-
imental measurements (e.g., load or strain) with computational simulations of
the experiment. While ad hoc or trial-and-error approaches are the most com-
mon, recently, various efforts have employed statistical or probabilistic methods
such as Bayesian inference (BI) to solve the inverse problem of calibrating the
material parameters [4]. The benefit of probabilistic methods over determinis-
tic optimizations schemes for calibration (e.g., finite element model updating,
gap method, virtual fields method) is that the probabilistic methods inherently
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furnish uncertainty information about the fitted parameters, rather than simply
providing the optimum parameters. Gogu et al. presented a BI approach for
the determination of macroscopic elastic stiffness of truss-type metallic structure
[5]. Liu and Au used BI to determine the material parameters of a phenomeno-
logical elasto-plastic model for the hysteretic load-displacement response of a
composite material [6]. Castillo and Kalidindi reported a calibration method
based on BI to determine the single crystal elastic constants of metallic materi-
als using indentation load-displacement data [7]. Ricciardi et al. demonstrated
the calibration of a crystal plasticity model using a BI approach [8]. Two efforts
in the literature have specifically applied BI to the calibration of NiTi SMA con-
stitutive model properties. Crews and Smith used BI to estimate the material
parameters of a phenomenological model for actuation response of NiTi due to
the shape memory effect [9]. Honarmandi et al. presented another example of
calibration of a model for shape memory effect in NiTi [10]. These two examples
addressed the calibration of models to simulate the thermally-induced response
of NiTi and not the superelastic response. A common aspect to the examples
cited above is that they used a single experimental comparator (e.g., global load
data) to arrive at the calibrated material parameters.

Generally, there is a three-fold reason to perform calibration using a rela-
tively large comparator data set. First, the uncertainty in the calibrated ma-
terial properties reduces as the experimental sample size increases. Second, a
larger sample size reduces the effect of any prior assumptions made related to
the distribution of material parameters. In the context of BI, this phenomenon
is sometimes referred to as the data overwhelming the prior. Third, a model cali-
bration performed using a single comparator such as the global load may furnish
material parameters that are optimized to give the correct load response. How-
ever, when the same model is used in another context of use (e.g., to simulate the
local strains), then the predictions using the optimum parameters may signifi-
cantly deviate from the expected response in terms of the quantity of interest.
The first two concerns noted here can be simply addressed by performing a large
number of experiments and using a larger number of observations to perform
the calibration. However, the third concern can be alleviated by using a variety
of comparators obtained using different experimental modalities to perform the
calibration. One approach to obtain a large quantity of comparator data other
than load is to use full-field surface strain measurements on the test samples and
using the strain field in the calibration process [11]. Digital image correlation
(DIC) is a versatile method to obtain full-field surface strain data during tensile
testing of materials. Rethore presented a general strategy for identifying mate-
rial parameters from full-field displacement data [12]. Bertin et al. presented
an example of a DIC-based constitutive model calibration approach where they
developed a method to determine crystal plasticity parameters from small-scale
DIC measurements [13].

While it is appealing to use BI on large comparator sample sizes or with
comparator data from multiple sources, there is a practical limitation. Mate-
rial property calibration using BI is typically implemented using a sampling
method such as Markov Chain Monte Carlo. A reliable distribution of the cali-
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brated material parameters is obtained by performing this sampling thousands
of times with varying material parameters and comparing the predictions of the
forward simulation in each step with the appropriate comparator. Performing
simulations on-line during the sampling process is quite impractical, particu-
larly when the constitutive response is highly non-linear such as in the case of
NiTi alloys. A more tractable solution to this problem is to create a library
of simulations beforehand with the input parameters spanning a reasonable pa-
rameter space. Then, during each sampling step this library can be queried
to obtain the simulation results for the closest available material parameters in
the library. This approach may work well when a small library is adequate.
However, if a large number of parameters need to be calibrated, then the size
of the library needed can be quite large. Alternately, this problem can be ad-
dressed by developing a surrogate forward model that can efficiently furnish the
simulation results for any input material parameters. Recently, a few efforts
have used machine learning (ML) to develop a surrogate model to speed up ma-
terial model calibration using BI. Wu et al. used neural networks to speed-up
the calibration of a homogenized elasto-plastic model for composites [14]. Lu
et al. used deep learning to determine elasto-plastic material properties using
indentation comparator data [15]. However, they did not use BI to determine
parameter calibration uncertainties.

In summary, BI is a useful approach to determine constitutive model param-
eters and associated uncertainties. It is desirable to use multi-modal experimen-
tal data such as full-field strain data together with load data as a comparator.
ML can be used to accelerate the BI parameter determination through the gen-
eration of a regression model that acts as a surrogate to the original constitutive
model. To our knowledge, there is not an effort in the literature consisting of
these three components to calibrate inelastic models in general and particularly
the computational models for superelastic NiTi. Thus, we address this gap by
implementing a combined BI and ML approach to calibrate and optimize su-
perelastic NiTi constitutive model parameters from load and full-field surface
strain data. We demonstrate this calibration approach with the phenomenologi-
cal superelastic constitutive law implemented in Abaqus finite element modeling
(FEM) framework [16]. However, the framework presented here is general and
can be applied to other models for superelasticity. In Section 2, we describe
the methods used in this calibration framework. In Section 3, we first present a
basic example of the BI calibration approach when the load-displacement data
from a tension test of NiTi is used as a comparator. We then present a de-
tailed example demonstrating all elements of the proposed approach. Finally,
we provide an application of this calibration approach. We demonstrate how
the uncertainty in the calibrated material parameters obtained using BI can be
propagated to subsequent simulations performed using these material proper-
ties. In Section 4, we critically assess the advantages and limitations of our
approach.
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2. Calibration Framework

We will first describe the calibration procedure in general. Later, we will
specialize the procedure to the specific phenomenological model for superelastic
deformation of NiTi.

Consider a constitutive law of the form σ(ε,m) where σ is the stress, ε is
the strain, and m is a material parameter vector. Let Q(σ,a) be a vector of
Quantities of Interest (QoI) that can be determined for a specific deformation
geometry and boundary conditions. Here a is a parameter vector encoding the
details such as geometry and boundary conditions that are necessary to calculate
Q. For example, Q could be the global load measured during the deformation
of a specimen at a fixed imposed displacement. Or Q could be the strain tensor
at a specific location in the specimen at an imposed deformation. Since Q is
based on the constitutive law, it indirectly depends on m. The QoI can either
be measured experimentally (Qexpt) or computationally predicted (Qsim) using
a model or numerical implementation of the constitutive law σ(ε,m).

The simplest procedure to calibrate a model of σ(ε,m) (i.e., to determine
parameters mcal) is to minimize the difference between Qexpt and Qsim while
varying m. A typical method to solve this inverse problem is to perform the
minimization:

mcal
LSQ := argmin

m

N
∑

i

wi

(

Qsim
i −Q

expt
i

)2
. (1)

Here N is the total number of observations of Q and wi is the weight assigned to
each observation. The objective function on the right hand side has a quadratic
form and thus, we refer to this procedure as least-squares calibration. While
this procedure is straight-forward, it does not furnish any information about
the uncertainty of the calibration. BI on the other hand, provides a tool to
determine mcal and quantify the uncertainty in the calibration.

The general scheme of our calibration method is shown in Figure 1. In the
first step of this calibration procedure, we standardize a test specimen geometry
and a test protocol. Based on these, we can experimentally obtain a number
of Qexpt values. In parallel, we setup a simulation with the constitutive law
σ(ε,m), the virtual specimen geometry, and boundary conditions based on the
test protocol. The simulation acts as a forward model and furnishes a number
of Qsim values. In the simulation, we vary the values of the material parameters
m to span the typical material parameter space and obtain the corresponding
Qsim values. Thus, we build a simulation library that maps m to Qsim. In the
next step, we use BI to obtain mcal and their uncertainty. We first describe the
BI component of this procedure below.

2.1. Bayesian Inference for Calibration and Uncertainty Quantification

The probability distribution of the material parameters given a set of ex-
perimentally measured quantities of interest (P (m|Qexpt) or posterior) can be
expressed in terms of the probability distribution of the material parameters
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Figure 1: A summary of the Bayesian Inference material parameter calibration method. A
flowchart listing the key components of the method is shown.

based on prior knowledge (P (m) or prior) and the probability of observing
an experimental response Qexpt if the material parameters were actually m

(P (Qexpt|m) or likelihood) using the Bayes’ theorem

P (m|Qexpt) =
P (m)P (Qexpt|m)

P (Qexpt)
. (2)

The denominator, P (Qexpt), is a normalization constant and referred to as the
probability of the evidence [17]. In BI, this factor is typically not calculated
and simply P (m|Qexpt) ∝ P (m)P (Qexpt|m).

Bayes’ theorem in the form described above furnishes a probability distribu-
tion of the material parameters given certain experimental data. The optimum
or fitted parameters can be reported from this distribution in terms of one of the
point estimates. Some common point estimates are mean, median, or maximum
a posteriori (MAP). The uncertainty in the fitted parameters can be reported
in terms of the credible intervals of the distribution. Credible intervals are the
probabilistic statistics counterpart to the confidence intervals in the frequentist
statistics. Thus, uncertainty estimation of calibration is built into this method.
The prior P (m) incorporates an expert’s knowledge about the parameter space
for a particular constitutive law. For example, the Young’s modulus of most
metals is in the GPa range with a larger probability between 10 to 100GPa.
The likelihood (P (Qexpt|m)) of observing a particular experimental response
for a given material parameters can be calculated using a forward model that
furnishes Q as a function of m. A simulation library that maps m to Qsim
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across the parameter space can be used to calculate the likelihood. Thus,

P (Qexpt|m) := c ·

N
∏

i

exp

(

−wi

(Qsim
i

−Q
expt
i

)2

2s2

)

, (3)

where c is a constant, w are the weights assigned to the observations, and s2 is
the standard deviation of the lumped error in the experimental measurements
[4]. The exponent in this expression is a loss function that quantifies the dis-
crepancy between the experimental measurement and a true response observed
for a particular m and reaches a maximum value when the discrepancy between
the observed and the true response is minimum [18]. If multiple independent ex-
perimental observations are available and the errors in the observations (s2) are
assumed to be constant, the total likelihood can be modeled as a multivariate
Gaussian distribution, resulting in the product term in Equation (3).

In most practical situations, no analytical expression for any of the terms on
the right hand side of Equation (2) is available. Hence, a numerical sampling
procedure is generally used to indirectly obtain the posterior distribution of the
material properties from the prior distribution and the likelihood function. In
this calibration scheme, we use a Metropolis-Hastings variant of the Markov
Chain Monte Carlo (MCMC) sampler to obtain the fitted parameter distribu-
tion. An MCMC sampler operates in three steps [4, 17, 19]. First, the material
parameters are initiated at a certain point in the parameter space (m) and the
posterior probability at that point is calculated knowing the likelihood function
and the prior distribution. Second, a new point mi is drawn in the material
parameter space and the posterior probability at the new point is calculated.
In the third step, the new sample is accepted if the new probability is larger
than the previous. However, the new sample is also accepted if the acceptance
probability is larger than a random number drawn from the uniform standard
distribution. Steps two and three are repeated until a certain number of samples
are obtained. From this sampled posterior distribution, the point estimates and
the credibility interval described above can be readily calculated to obtain the
optimum material parameters and their uncertainty.

There is one challenge in executing the approach described so far. One of
the terms in the likelihood function in Equation (3) is Qsim. If the forward
model used to calculate Qsim from a sampled m is fairly complex, then it may
be challenging to use the model online during the MCMC sampling. Online cal-
culation of Qsim may be avoided by building a library of Qsim beforehand and
then querying the library during the sampling process for the closest available
material parameters to mi. This is akin to doing a nearest-neighbor interpo-
lation on the simulation results in the parameter space. A superior approach
is to develop a computationally efficient surrogate model that is derived from
the available simulation results to furnish Qsim for any m. We describe the
development of such a surrogate forward model below.
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2.2. Surrogate Model from the Simulation Library using Machine Learning

A surrogate model that can furnish Qsim for any m can be built using any
regression scheme if a library of previously run simulations that map m → Qsim

is available. In this work, we choose a ML regression method – kernel support
vector machine (SVM) – to build the surrogate model [20]. One regression model
is trained for each QoI that will be used for material parameter calibration. Once
a regression model is trained, it can be used in the MCMC sampler described
above to obtain the likelihood P (Qexpt|m) for m that is not present in the
simulation library.

Figure 2: Test specimens and the quantities of interest (QoIs). (a) Stress-strain curve of a
NiTi dogbone specimen tested per ASTM 2516. The specimen geometry is shown on the left
inside the inset. The single element simulation geometry used to model the tensile response
of this specimen is shown on the right inside the inset. (b) A diamond NiTi specimen load-
displacement response during an isothermal tensile test. The specimen geometry is shown
inside the inset. The simulation geometry consists of a quarter diamond and is highlighted in
orange in the inset. (c) A typical surface strain field in a NiTi diamond specimen obtained
using a digital image correlation (DIC) measurement during a tensile test. In all cases, the
loading direction is along Y.

2.3. BI and ML Calibration Approach for a Superelastic Material Model

Now we specialize the BI- and ML-based calibration approach to a phe-
nomenological model for superelastic deformation behavior. Figure 2(a) shows
the constitutive response of a typical superelastic NiTi specimen at room tem-
perature. The model of Auricchio and Taylor is widely used to simulate such
deformation response [16, 21]. The model is developed in an infinitesimal strain
framework. Stress and temperature are considered as the independent variables.
The inherent deformation mechanism of austenite to martensite phase transfor-
mation is simulated. The total martensite phase fraction at a material point is
taken as the internal variable. The total strain at a material point is additively
decomposed into an elastic and a transformation component (ε = εe+εtr). The
elastic behavior of the austenite and martensite phase is assumed to be isotropic.
The evolution of the internal variable is determined using a rate-independent
formulation. This model is implemented in various commercial FEM packages
including Abaqus (Simulia Dassault Systemes, version 2019). The model accepts
six key material inputs: Young’s modulus of austenite (EA), Young’s modulus
of martensite (EM), maximum transformation strain (εt), upper plateau stress
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in tension (σUPS), lower plateau stress in tension (σLPS), and the compression
plateau stress (σCPS). The connection of these six parameters to the superelas-
tic constitutive response is schematically shown in Figure 2(a). While σCPS is
dependent on the microstructure and the processing history of a specific NiTi
specimen, often σCPS is not calibrated in simulations and it is assumed that
the ratio σCPS/σUPS approximately equals 1.5 [22, 23]. We do not make this
assumption. The model allows to specify the hardening of upper and lower
plateaus. We assume a fixed hardening of 30MPa. The Abaqus implementa-
tion of the model takes other minor inputs. Those are not addressed in this
work. Plasticity is also not addressed. In summary, the goal of this BI- and
ML-based calibration approach is to solve the inverse problem of determining
m = {EA, EM, εt, σUPS, σLPS, σCPS} given a set of experimental inputs.

2.3.1. Calibration Using Global Stress Data

As a first example of the BI-based calibration approach described in Sec-
tion 2.1, we calibrate the superelastic material model using the observations
from a tensile test on a dogbone specimen that was laser-cut from NiTi tubing.
We heat treated a commercial tubing material with 50.8at.%Ni composition
such that it was superelastic at room temperature. The dogbone test specimen
geometry is shown in Figure 2(a) inset. An experimental stress-strain curve
obtained at room temperature according to the standard test method in ASTM
F2516 [24] is shown in Figure 2(a). The test method consists of loading the
specimen in displacement control to an engineering strain of 6%, unloading to
zero load, and finally loading to fracture. We performed the test on an Instron
5969 load frame at a nominal strain rate of 1.4× 10−4 s−1. The axial strain
in the gage was measured using the built-in video extensometer in the Instron
load frame. We calculated the axial stress in the specimen gage from the load
measured by a 1 kN load cell on the Instron load frame and the cross-section
dimensions of the test specimen measured prior to test. We extracted axial true
stress at 82 points along the stress-strain curve such that the points were equally
separated in time. These axial stress values will serve as Qexpt in the material
parameter calibration.

We created a single element Abaqus/Standard FEM simulation of the load-
ing condition used in the experiment. The deformation in the gage of a dogbone-
type NiTi specimen can be adequately captured by a single element model. We
modeled the response of the single element model using the superelastic material
model in Abaqus. We created a library of 1843 instances of the simulation with
the material parameters in each case selected using Latin hypercube sampling of
the following parameter space: EA ∈ [10GPa, 80GPa], EM ∈ [10GPa, 50GPa],
εt ∈ [0.03, 0.07], σUPS ∈ [100MPa, 600MPa], σLPS ∈ [10MPa, 400MPa], and
σCPS ∈ [150MPa, 700MPa]. We started with smaller library sizes and eventu-
ally settled with 1843 simulations since they furnished reasonable results for this
example. Unphysical material parameter combinations such as σUPS ≤ σLPS

were not instantiated. We applied boundary conditions that were equivalent
to the experimental boundary conditions used in the dogbone tensile test de-
scribed above. From the result of each simulation, we extracted axial true stress
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at 82 frames that were equally separated in time. We selected the time points
such that the simulation axial stress data was available at the same time in-
stants at which the axial stress from the experiment was extracted. This is
rather straightforward to do considering that both the experiment and simula-
tion were executed in displacement control with a constant strain rate boundary
condition. These axial stress values will serve as Qsim in the material parameter
calibration.

From the experimental stress-strain data for the dogbone and the simula-
tion results in the library, we performed material property calibration. All data
analysis was performed in Matlab (The Mathworks, Inc., version R2018a). We
selected global axial true stress at 82 locations along the stress-strain curve as
the QoI for this BI calibration example. From these QoI, we first performed a
traditional weighted least-squares calibration to obtain the optimum values of
the six material parameters. For this, we performed minimization as specified
in Equation (1) using a weight at each point that was proportional to the local
slope of the experimental stress-strain curve. The specific weights used at 82
QoIs are listed in Supplementary Data. Weights proportional to the local slope
of the stress-strain curve appear to equalize the influence of data points from the
plateaus vs. the points from the elastic regimes. Note that such minimization
provides the optimum parameters among the parameter combinations in the
1843 simulation instances. Then, we performed a BI calibration using a Good-
man and Weare affine invariant ensemble MCMC sampler [25]. We used 100
walkers and drew 4× 106 samples. We used an uninformative flat prior. That
is, each of the six material parameters had a uniform probability distribution in
the parameter space described in the paragraph above. In BI, the choice of prior
can influence the results. We performed a limited study and found out that the
results in this case are relatively insensitive to the choice of prior distribution.
The details of prior effect are provided in Supplementary Data. We initialized
the walkers with material parameters drawn from a normal distribution cen-
tered at the mean of the parameter space and with a standard deviation equal
to 1/10th of the parameter space span. We defined the likelihood function as
described in Equation (3). We discarded the first 50% of the samples from the
posterior as the burn-in period. From the marginal posterior distribution for
each material parameter, we calculated MAP, median, and 95% credible inter-
vals. For this example, we did not perform simulation library enrichment using
the ML approach described in Section 2.2 since we felt the library size of 1843
adequate to demonstrate the BI calibration approach.

For reference, the superelastic model parameters for this NiTi tubing ma-
terial, determined using a semi-supervised trial-and-error approach, are - m =
{31 GPa, 26 GPa, 0.045, 340 MPa, 70 MPa, 510 MPa}.

2.3.2. Calibration Using Global Load and Full-field Strain Data

As a second example of the BI- and ML-based approach, we calibrate the
superelastic material model from global load and local strain observations ob-
tained during a tensile test of a NiTi diamond specimen laser cut from a strip
material with a composition of 50.8at.%Ni. The specimen geometry is shown
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as an inset in Figure 2(b). We heat treated the NiTi strip material such that
it was superelastic at room temperature. While the NiTi material used in this
example has an identical composition as the tubing material in the previous
example, the two materials have undergone different processing steps. Thus,
the mechanical properties of this material in strip form can be different than
those of the NiTi material in tubing form described in the previous section.
Prior to the test, we applied a speckle pattern of finely ground charcoal on a
matte white background to one surface of the diamond [26]. The experimental
global load-displacement curve for this specimen is shown in Figure 2(b). We
performed the test on an Instron 5969 load frame in displacement control at a
nominal displacement rate of 2.94× 10−3 mms−1 at room temperature. During
the tension test, we acquired photographs of the specimen gage (i.e., the curved
struts on one side of the diamond) at a regular interval of 1 s using a Mitakon
Zhongyi 20 mm f/2 4.5X Super Macro lens mounted on a Sony A7III digital mir-
rorless camera with 0.2 s exposure and ISO 400. We analyzed the photographs
using Ncorr DIC software [27] implemented in Matlab to obtain the full-field
2D surface strain tensor. We used a subset radius of 30 pixels, subset spacing
of 2 pixels, and strain window radius of 15 pixels in Ncorr. A sample full-field
strain map (shear strain component) obtained using this DIC measurement is
shown in Figure 2(c). We simultaneously recorded the global load-displacement
data during the tensile test using the load cell and the crosshead movement
respectively on the Instron load frame.

Based on the diamond specimen geometry and the experimental test bound-
ary conditions described above, we created a simulation of the test. The dia-
mond geometry has four-fold symmetry and thus, a quarter diamond as shown in
Figure 2(b) inset was modeled to obtain the full deformation response. We mod-
eled the response using the superelastic material model in Abaqus. We created
a library of 544 instances of the simulation with the material parameters in each
case selected using Latin hypercube sampling of the following parameter space:
EA ∈ [40GPa, 80GPa], EM ∈ [20GPa, 50GPa], εt ∈ [0.035, 0.055], σUPS ∈
[300MPa, 500MPa], σLPS ∈ [100MPa, 300MPa], and σCPS ∈ [350MPa, 700MPa].
Similar to the first example, the library size was determined by trial and error
and unphysical material parameter combinations were not instantiated.

The QoI for the calibration scheme are the global load at 11 equally separated
points between A and B in Figure 2(b), the global load at 11 equally separated
points between B and C in Figure 2(b), and the local mean Green-Lagrange
shear strain (εxy) at four regions in the specimen gage marked by 1 to 4 in
Figure 2(c) at the same 22 points during the loading cycle where the global load
data was extracted. The rationale behind using the shear strain for calibration
is provided in the Discussion section. Thus, 22 global load values and 88 local
shear strain values were used as QoI for a total of 110 quantities. We extracted
the Qexpt from the load-displacement and DIC data obtained in the tensile
test. The same quantities from each simulation in the simulation library were
extracted using Python post-processing scripts.

From Qexpt and Qsim from each of the simulation in the simulation library,
we obtained the least-squares calibrated material parameter vector by perform-
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ing the minimization in Equation (1). We used a weight of 0.25 for the strain
QoI and a weight of 1 for load QoI. These weights and the fact that there are
four times as many strain quantities as load ensure that the influence of local
strain and global load on the calibration is equal. Subsequently, we performed
a BI calibration using the same MCMC sampler as above. During MCMC sam-
pling, we selected the simulation result with the nearest available m to the mi

in the MCMC draw to calculate the likelihood function value per the expression
in Equation (3). We did this because Qsim values are only available for those
m vectors present in the simulation library and not for arbitrary m. The na-
ture of the prior and the initial walker values are similar to the example above.
We generated 1× 106 samples and rejected the first 20% of the samples as the
burn-in samples. From the sampled posterior distribution of m, we calculated
median and MAP material parameters as well as the credible interval. We refer
to these results as the results from BI approach.

To enrich the simulation library, we trained a regression SVM model to each
of the 110 QoI using the results of all 544 simulation instances. Thus, a fitted
SVM surrogate model furnishes the value of that QoI for an arbitrary m given
as an input. We used the fitrsvm function in Matlab for this purpose. We
used a Gaussian kernel with automatic scaling. We standardized the m dur-
ing fitting since various material parameters are of widely different magnitudes.
We used the automatic optimization option in the fitting function. This option
internally finds such hyperparameters of the SVM that minimize the five-fold
cross-validation loss and improve accuracy of the regression. The details of
verification performed on the trained models are described in Supplementary
Data. The verification study demonstrates that 544 simulation samples are ad-
equate to furnish a reasonably accurate surrogate model in the six-dimensional
parameter space.

Using the trained SVM surrogate models, we performed another calibration
using BI. During the MCMC sampling for this calibration, the likelihood func-
tion in Equation (3) was calculated using the QoI values obtained from the
trained models. A trained model can furnish Qsim for an arbitrary m. From
the results of this calibration, we again computed descriptors such as median
and MAP. We refer to these results as the results from BI + ML approach. In
summary, we calculated three calibration results for this example: least-squares,
BI approach, and BI + ML approach.

One motivation behind using the local strains as a QoI was the belief that
they will furnish such calibrated material parameters that result in a more
accurate simulation of the local strains. To determine if that is the case, we also
performed a BI + ML calibration where the weights of the strain QoI were set to
zero when calculating the likelihood function. Thus, only load QoI were used in
this calibration. From the sampled marginal posterior probability distributions
in this example, we calculated the median calibrated material properties.

To assess the robustness of the calibration, we performed a simple validation
test. For the validation, we laser-cut a dogbone shaped specimen from the same
NiTi strip material as that used to make the diamond described above. This
dogbone specimen is different from the dogbone specimen laser cut from NiTi
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tubing in the previous example. We performed a tensile test on the dogbone
at room temperature. We created a simulation representative of this test and
instantiated the simulation with median, MAP, and 95% credible interval pa-
rameters described above. We compared the simulation results with the tensile
test measurements for the purpose of validation. A robust validation is typically
performed on a model of equal or higher complexity compared to the model from
which calibration results are obtained. Such study is not within the scope of
this demonstration.

For reference, the superelastic model parameters for this NiTi strip material,
determined using a semi-supervised trial-and-error approach, are - m = {20
GPa, 15 GPa, 0.04, 330 MPa, 180 MPa, 495 MPa}.

3. Results

3.1. Calibration Using Global Stress Data

The results of least-squares and BI calibration for the example when the
global stress was used as the QoI are listed in Table 1 and graphically shown
in Figure 3. The results of least-squares calibration in the table reveal material
parameter values in the general regime that is expected for a typical supere-
lastic NiTi tubing material. However, EA < EM. This is unusual but not
completely unexpected. Heat treated NiTi typically exhibits an intermediate
R-phase formation during the austenite to martensite phase transformation.
The intermediate phase transformation has a small transformation strain asso-
ciated with it and it generally manifests as a softer austenite modulus in the
constitutive response [28]. The marginal posterior probability distribution plots
from BI calibration are shown in Figure 3(a). A narrow posterior probability
distribution reflects a lower uncertainty in the calibration of that parameter.
Thus, EM and εt are calibrated with a lower uncertainty compared to the other
four parameters. The lower uncertainty of these two calibrated parameters is
also reflected in tighter bounds on the 95% credible interval listed in Table 1.

The calibration results are graphically shown in Figure 3(b). Overall, the
MAP point estimate of the posterior distribution shows a closer match with the
experimental data as emphasized in the inset. The closeness of the match can
be quantified and reported in terms of the mean absolute percent error (MAPE)
defined as,

MAPE =
1

N
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Here N is the total number of QoIs, which is 82 in this example. In the calcula-
tion of all MAPE values in this work, we did not consider the QoIs corresponding
to the first two steps of the loading sequence in each experiment. This is be-
cause the load and the strains are close to zero in the first two steps of a tensile
test and the errors at those steps are of lower concern. MAPE is tabulated in
Table 1 and the smallest value is obtained for the MAP point estimate from
BI calibration. This suggests that the MAP estimate furnished the most accu-
rate parameter calibration. Overall the envelope of stress-strain response from
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the 95% credible interval is broad. The calibrated and the experimental stress-
strain curves diverge in the large strain regime. This is because plasticity is not
incorporated in the simulations.

Fit description Ea Em εt σUPS σLPS σCPS MAPE
(GPa) (GPa) (MPa) (MPa) (MPa) (%)

Least squares fit 26.2 32.7 0.0517 355 61.9 448 15.2
Bi fit (median) 25.0 33.0 0.0519 278 62.6 504 21.6
BI fit (MAP) 28.0 32.6 0.0513 342 55.4 482 12.9
BI fit (95% credible
interval)

11.6 25.8 0.0440 111 13.0 416
33.6 38.1 0.0595 387 124 665

Table 1: Results of calibration with global stress as the quantity of interest. MAPE refers to
mean absolute percent error.

Figure 3: Results of calibration with global stress as the quantity of interest. (a) Posterior
probability distribution of the six NiTi material model parameters sampled using the Markov-
chain Monte Carlo scheme from a comparison of dogbone tensile test and simulations. (b) A
qualitative comparison of the calibration on the same dogbone geometry.

3.2. Calibration Using Global Load and Full-field Strain Data

The results of calibration for the second example where global load and the
full-field surface strain from DIC were used as the QoI are listed in Table 2.
As previously noted, BI fit refers to the calibration that was performed with
the library of simulations only and BI + ML fit refers to the calibration where
ML regression model was used to enrich the simulation library. The results for
BI fit are graphically shown in Figure 4. Overall, the elastic modulii are cali-
brated with a higher confidence compared to the other four parameters. This is
evident from the relatively narrow shape of the marginal posterior probability
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distribution for EA and EM in Figure 4(a). The least-squares calibrated param-
eters furnish results that provide the closest match with the experimental data.
The second closest match is furnished by the MAP parameters from the BI fit.
This is evident in the MAPE values in the table and in the load-displacement
curves in Figure 4(b). The local shear strain (εxy) prediction with the median
fitted parameters is compared with the DIC results at peak load in Figure 4(c).
The qualitative comparison appears good. However, quantitatively the strains
match only modestly. For example, if MAPE were calculated only for the load
quantities of interest, then it is 11% for the median fitted parameters. This
means that a larger error (MAPE) is contributed by strains than load. We
discuss this aspect further in the Discussion section below.

The results for BI + ML fit are graphically shown in Figure 5. Both median
and MAP estimates from the BI + ML approach provided a better fit than
the BI approach and a marginally better fit than the least-squares approach.
This is evident from the smaller MAPE in Table 2, narrower marginal posterior
probability distributions for the fitted parameters in Figure 5(a) compared to
the BI fit, and a relatively close match between the simulated load-displacement
curves for the fitted parameter and the experimental data in Figure 5(b). The
local shear strain prediction with the median fitted parameters is compared with
the DIC results at peak load in Figure 5(c). The qualitative comparison appears
good.

Fit description Ea Em εt σUPS σLPS σCPS MAPE
(GPa) (GPa) (MPa) (MPa) (MPa) (%)

Least squares fit 49.4 39.2 0.0374 341 204 434 17.9
Bi fit (median) 56.1 35.7 0.0453 402 194 523 20.5
BI fit (MAP) 55.9 35.6 0.0524 470 108 475 22.2
BI fit (95% credible
interval)

40.3 21.9 0.0355 305 105 359
75.9 41.4 0.0545 495 294 692

BI + ML fit (median) 54.0 42.7 0.0377 355 204 407 17.3
BI + ML fit (MAP) 54.4 44.9 0.0368 351 201 408 17.4
BI + ML fit (95%
credible interval)

43.1 31.4 0.0351 328 191 379
66.3 49.5 0.0442 387 218 437

Table 2: Results of calibration for the diamond specimen using load and full-field strain data.

The use of both strain and load QoI in this example, rather than using just
the macro load as the QoI, resulted in the calibrated material parameters that
furnished a more accurate simulation of the local strains. We performed a BI
+ ML calibration using only the load QoI. This resulted in median mcal =
{48.9 GPa, 31.2 GPa, 0.0447, 342 MPa, 194 MPa, 494 MPa}. These values are
different than the results listed in Table 2 for the median mcal. These material
parameters resulted in a MAPE of 21.9%, which is larger than the MAPE from
median BI + ML parameters listed in the table (17.3%). The MAPE calculated
for load values only was 3.71%, which is smaller than the MAPE for load from
median BI + ML parameters listed in the table (5.3%). This means that the
use of only load QoI resulted in a more accurate simulation of the load response,
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but a less accurate simulation of the local strain response.

Figure 4: Results of BI calibration with global load and surface strains as the quantity of inter-
est. (a) Marginal posterior probability distributions of the six NiTi material model parameters
sampled using the Markov-chain Monte Carlo scheme from a comparison of diamond tensile
test, DIC strain field data, and simulations. (b) A qualitative comparison of the calibration
on the same diamond geometry. Load-displacement data from the tensile test is shown. (c)
Comparison of the local shear strain at peak displacement during the tensile test as measured
using DIC and from a simulation with the median fitted material properties.

The results of a simple validation test performed on a planar dogbone spec-
imen using the material parameters obtained from the BI + ML approach are
shown in Figure 6. Simulated and experimental load-displacement curves match
reasonably well. MAPE for median and MAP fitted parameters is 12.2% and
12.1% respectively. The model calibration was performed using axial load and
local shear strain data with the specimen in a mixed loading mode. The load-
ing mode in this validation test was axial. Considering that the calibration was
performed in the mixed loading mode vs. the validation with uniaxial loading
mode, this validation shows that the calibration is robust. The dogbone speci-
men used in this simple validation study is different compared to the dogbone
specimen used in Section 3.1. This dogbone was manufactured from a planar
Nitinol strip material, while the dogbone in Section 3.1 was manufactured from
a Nitinol tubing material. Nitinol strip and tube materials exhibit different
mechanical properties.

4. Discussion

4.1. Propagation of Material Parameter Uncertainty to Simulations of Cyclic

Loading

The material parameter uncertainties obtained using the BI + ML cali-
bration approach above can be propagated to any subsequent simulations of
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Figure 5: Results of BI + ML calibration with global load and surface strains as the quantity
of interest. (a) Marginal posterior probability distributions of the six NiTi material model
parameters sampled using the Markov-chain Monte Carlo scheme from a comparison of dia-
mond tensile test, DIC strain field data, and simulations. The simulation library was enriched
using a machine learning surrogate model in this case. (b) A qualitative comparison of the
calibration on the same diamond geometry. Load-displacement data from the tensile test is
shown. (c) Comparison of the local shear strain at peak displacement as measured using DIC
and from a simulation with the median fitted material properties.

Figure 6: A simple validation of the BI + ML calibrated parameters obtained from the
diamond geometry. The validation simulation was performed on a planar dogbone simulation
geometry. The experimental data were obtained from tensile test of a planar dogbone specimen
fabricated from the identical material as that used to make the diamond samples.

superelastic deformation. We discuss the consequences of propagating the ma-
terial parameter uncertainties. One of the most common purposes of simulations
using the superelastic model is to assess the fatigue performance of a medical
device fabricated from NiTi [29]. The simulations designed for this purpose typ-
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ically impose a mean displacement and a cyclic displacement amplitude on the
component as schematically shown in Figure 7(a). The distribution of the local
mean strain and strain amplitude in the device during a fatigue loading cycle is
then simulated, resulting in a point cloud of the strains as shown in Figure 7(b).
The critical mean strain and the critical strain amplitude in the point cloud
are typically used as the fatigue indicator parameters for the NiTi device and
a fatigue safety factor (FSF) is calculated from them. Any uncertainty in the
simulation inputs can naturally introduce an uncertainty in the FSF calculation.
To demonstrate the utility of the BI calibration approach presented here, we
illustrate how the uncertainty in the superelastic NiTi material parameters can
propagate to a simulation of fatigue deformation. We created a simulation of the
diamond geometry shown in Figure 2(b) with an imposed mean displacement
of 1.0 mm and a displacement amplitude of 0.4 mm. We created 200 instances
of this simulation with material parameters sampled within the 95% credible
interval for the BI + ML fit described in Section 3.2. We extracted the strain
tensor at each integration point in the model at the two extrema of the fatigue
loading cycle marked by D and E in Figure 7(a). We calculated the mean strain
Emean and the strain amplitude Eamp at each integration point as,

Emean =
1

2
(ED + EE) , Eamp =

1

2
(ED − EE) , (5)

where ED and EE is the strain tensor at an integration point at D and E re-
spectively. For each simulation, we calculated the maximum principal invariant
of the two strain tensors above at each integration point. A sample scatter plot
of the strain amplitude plotted against mean strain is shown in Figure 7(b).
We determined the critical strain amplitude and the critical mean strain at the
point with the largest value of the maximum principal invariant of Eamp.

The probability distribution of the critical mean strain from the 200 sim-
ulations is shown in Figure 7(c) and the probability distribution of the strain
amplitude is shown in Figure 7(d). In both plots, the result obtained from the
median calibrated material properties from the BI + ML approach is marked
by a dashed line. The mean strain shows a range of approximately 0.01 and the
strain amplitude shows a range of approximately 0.007. FSF calculated from
this will show a relatively large variation. Thus, we have demonstrated that the
uncertainty information furnished by the BI-based calibration approach can be
propagated to fatigue simulations of NiTi and it can result in appreciable un-
certainty in the fatigue indicator parameters. Similar to strains, if other fatigue
indicator parameters for NiTi such as the phase transformation volume ampli-
tude [30] are extracted from the simulations, then those values will be affected
by the material parameter uncertainty as well.

We emphasize that this approach provides a quantification of the material
parameter uncertainty that may be propagated to any subsequent simulations of
fatigue. However, this approach does not quantify the accuracy of the FSF cal-
culated in this subsequent simulation. The accuracy of the FSF will be certainly
dependent on the accuracy of the calibrated material parameters. However, it
will also be influenced by the ability of the inherent material model in simulating
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Figure 7: A demonstration of the propagation of material parameter uncertainties to a subse-
quent simulation. (a) Schematic load-displacement curve of a fatigue-type loading character-
ized by a mean displacement and a displacement amplitude. (b) A representative scatter plot
of the strain amplitude vs. mean strain at finite element model integration points calculated
from the loading states D and E shown in (a). (c) Distribution of mean strain and (d) strain
amplitude for fatigue loading simulations performed with the material parameter probability
distribution obtained using the BI + ML approach.

the fatigue indicator parameters, the accuracy of the underlying finite element
model (e.g., geometry and mesh resolution), and any other assumptions made
in the simulations.

4.2. Accuracy of Local Compressive Strain Prediction from the Calibrated Pa-

rameters

While using the BI approach has benefits over the least-squares calibration
approach and using the diamond geometry for calibrating the NiTi superelas-
ticity model has benefits over the use of only simple tension test data, neither
the BI approach nor the specimen geometry can overcome the limitations of
the underlying constitutive model. In this section we discuss one key example
of such limitations. One motivation behind using the full-field surface strain
data was to obtain such calibrated material parameters that will furnish a more
accurate simulated local strain distribution compared to the calibration with
just the global load data. We showed above that the BI + ML approach using
strain and load QoI indeed furnished more accurate local strains in terms of the
MAPE compared to when a similar calibration was performed using only the
load QoI. However, it is worth comparing the BI + ML calibration results with
the DIC data in detail. Thus, we compare the simulated local strain distribution
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from the optimum calibrated material parameters with the experimental data
obtained using DIC. To emphasize, these strains are for the diamond BI + ML
calibration results when both strain and load QoI were used.

A comparison of the simulated local shear strains (represented in terms of
simulation QoI) with the DIC measurements (represented in terms of experi-
mental QoI) in two key regions of the diamond sample at the peak load is shown
in Figure 8. As described in Section 2.3.2, strains averaged over four key re-
gions in the diamond geometry served as the QoIs along with the global load
in the demonstration of BI + ML calibration approach. Two of those regions –
marked 2 and 4 in Figure 2(c) – exhibit compressive strains. In the figure,
we have plotted the simulated strains in these two regions as a function of the
ratio σCPS/σUPS. The relative error in the strain prediction from the median
or MAP material parameter fit with respect to the experimental measurement
is up to 25%. While this is undesirable, it is unavoidable considering that the
model consistently underestimated the strains in some regions irrespective of
the material parameters used as shown in Figure 8(b). The phenomenological
constitutive model considered in this study approximates the NiTi deformation
as isotropic, among other assumptions [16]. As a consequence of this, the ac-
curacy of the simulated local compressive strains from the calibrated material
properties is modest.

In the same figure, it can be seen that the ratio σCPS/σUPS is 1.3 for the
median fit and 1.0 for MAP from the BI + ML approach with the 95% credible
interval values in between. While the ratio is typically taken as 1.5 for NiTi
in tube form, 1.0 to 1.3 is a reasonable number for NiTi strip material. The
strip material has a texture with a strong 〈1 1 0〉 component [31]. A simple
calculation using the crystallographic theory of martensite [32] and mechanics
reveals that σCPS/σUPS = 1.0 for [1 1 0] orientation and the ratio increases for
orientations towards [1 1 1], ultimately reaching 1.5 (See Supplementary Data for
details of the calculation). Thus, while the local compressive strain predictions
with the fitted material parameters are lacking due to the model limitations,
the σCPS/σUPS ratio is reasonably calibrated. The MAP estimate of 1.0 for this
ratio is also consistent with the observations in the literature for [1 1 0] oriented
single crystals [22].

4.3. Advantages and Challenges of the BI Calibration Approach

A clear benefit of the BI approach to calibrating constitutive models is the
information about uncertainty in the fit obtained from them. This material
parameter uncertainty, together with other uncertainties can be propagated to
subsequent simulations as we demonstrated. The benefit of using an ML-based
surrogate model is that it can improve the parameter fit by enriching the sim-
ulation library used in the calculation of likelihood function. The approach
presented here is quite general and can be implemented for any model for su-
perelastic deformation. Also, this approach can incorporate essentially any QoI
in the calibration process as long as it can be extracted from the simulations
built with that constitutive model. In particular, the use of strain QoI resulted
in a more accurate simulation of the local strains compared to using only the
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Figure 8: Accuracy of the compressive local strain prediction using the calibrated material
properties. (a) Comparison of simulated strain QoI with experimental (DIC) strain QoI in

region 2 in Figure 2(c) at peak load shown in Figure 2(b) by point B. (b) Comparison of

simulated strain QoI with experimental (DIC) strain QoI in region 4 in Figure 2(c) at peak
load. The simulated strains are lower in magnitude than the DIC measurement which is
shown by a black horizontal line in both plots. The QoIs are calculated using the shear strain
component.

load as the experimental comparator. The diamond geometry furnishes both
tensile and compressive response in different regions and allows the calibration
of both tensile and compressive model parameters from a single test.

A key challenge associated with this approach compared to the least-square
or trial-and-error calibration is the relatively large upfront effort required in
setting up the calibration scheme. It requires the construction of a simulation
library for a specific test geometry and test method specification. However, once
such a library is established, it can be used for any subsequent calibration using
the same test setup. An informed choice between this sophisticated calibration
method and alternatives can be made by setting concrete expectations about
the credibility of simulations for a specific context of use. Frameworks such as
the ASME V&V 40 standard can be used for this purpose [33]. For example,
if the model risk is high for a particular context of use, then investing in the
BI calibration scheme could be desirable to ensure the influence of material
parameters and their uncertainty is rigorously considered. However, if the model
risk is low, then a simpler calibration approach may be used to obtain the
nominal material properties.

Implementation and execution of this calibration method requires certain
subjective inputs on the part of the analyst. For example, prior distribution
of the material parameters is a subjective choice. We demonstrated that the
calibrated material parameters from the posterior distribution can be estimated
using point estimates such as median and MAP. However, it is a subjective
choice to select a particular point estimate. The weights used in calculating
the likelihood function are also a subjective choice. However, these subjective
choices present an opportunity to incorporate the specialist’s knowledge about
the constitutive response in the calibration scheme.
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Since the likelihood function is calculated from a comparison of the simu-
lated and the experimentally observed response of the QoIs, the accuracy of
calibration may be impacted by the limitations of the test setup and the lim-
itations of the underlying model itself. For example, an incorrect DIC setup
can furnish an inaccurate surface strain distribution, which will impact the cal-
ibration. In Section 4.2 we reported the modest accuracy of the local strains
simulated using the calibrated parameters due to the limitations of the model
itself. We also attempted to use the full strain tensor in four regions ( 1 - 4
in Figure 2(c)) as the QoI in the diamond calibration example. However, the
results were not superior to the case when the shear strain component was used
as the quantity of interest. We found that the finite element model used in this
study was able to capture the shear strains more accurately compared to the
normal strain components (See supplementary Data for additional details). Ad-
ditionally, the SVM surrogate model accuracy was lower for the normal strain
components. These factors plausibly lead to the strain tensor-based calibra-
tion approach not yielding superior results to the approach using only the shear
strain component. Thus, ensuring that the test methods furnish robust data,
appropriate QoIs are selected to perform the calibration, and the underlying
forward model is accurate are the responsibilities of the specialist to ensure that
reliable calibrated material parameters are obtained and the simulation results
from such parameters are accurate.

There are several opportunities to further refine this calibration approach
and the communication of calibration results. There is significant prior work
on incorporating individual sources of uncertainty in the Bayesian calibration
procedure [5, 34]. This work can be extended to individually assess the impact
of various sources of uncertainty on the calibrated parameters. We extensively
documented the effect of model error on the accuracy of calibration. Various
efforts have suggested methods to account for and reduce the impact of model
error or uncertainty on the calibration procedure [4, 35]. We presented the
uncertainty in the calibrated material parameters in terms of the credibility
interval. The credibility intervals may be reported in various ways including
the highest posterior density interval (HPI) or equal-tailed interval [8]. One of
such representations that is the most informative may be chosen when reporting
the uncertainty.

5. Summary and Conclusions

We presented the implementation of a Bayesian Inference material property
calibration approach for a constitutive model to simulate the superelastic de-
formation of NiTi shape memory alloy. We made three contributions as part of
this approach:

1. We presented a diamond standard specimen geometry that can be used
to calibrate both tensile and compressive material parameters. This is
significant considering that the constitutive response of NiTi is asymmetric
in tension vs. compression.
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2. We demonstrated a method to incorporate full-field surface strain data
obtained using digital image correlation in the calibration process. This
is significant because full-field strain data furnishes a large number of
comparators in the calibration process and can contribute to increasing
the accuracy of the calibration. Incorporation of surface strain data also
resulted in model parameters that furnish more accurate local strain dis-
tributions and a more accurate determination of the fatigue safety factor
from the simulations.

3. We demonstrated that a relatively simple machine learning surrogate model
can be used to enrich the simulation library used in the calibration. This is
significant because generating a simulation library using a nonlinear con-
stitutive law such as that used in this work is challenging. The surrogate
model can enable performing high-quality calibration in a computationally
efficient manner.

The key advantage of the Bayesian Inference approach is that it furnishes un-
certainty in the calibrated material parameters and that uncertainty can be
propagated to subsequent simulations. While we applied the calibration scheme
to the Auricchio and Taylor [16] model for superelastic response implemented in
Abaqus finite element modeling framework, this method is versatile and can be
applied to other models for the deformation of NiTi SMA. The ultimate accuracy
of simulations conducted with the calibrated material parameters, however, de-
pends on the ability of the underlying constitutive model to accurately capture
the physics of the material response.

6. Data Availability

The raw data required to reproduce these findings cannot be shared at this
time due to technical or time limitations. The processed data required to re-
produce these findings are available to download from https://github.com/

confluentmedical/nitinol-bayes-cal. Annotated computer code to per-
form this calibration is available at https://github.com/confluentmedical/
nitinol-bayes-cal.
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1. Quantities of Interest and Weights

For the demonstration of Bayesian Inference (BI) approach for material parameter calibration using the
dogbone specimen in Section 2.3.1, the quantities of interest (QoI) are the global stress values at 82 points
along the stress-strain curve. The stress data is extracted at points equidistant in time and since the test
is performed at constant strain rate, the points are equally separated in strain. The weights used in the
objective function calculation for the least-squares fitting and for the calculation of the likelihood function
were taken proportional to the local slope of the load-displacement data for the corresponding experiment.
The motivation behind such a choice is that this gave relatively equal weight to the elastic regime and the
plateau or the transformation regime during fitting. Without the weights, the transformation plateau data
was overfitted and the elastic regime data was underfitted because there were relatively few data points in
the elastic regime. The weight wi used in Equation 1 are listed below:

w = [0.00, 29.78, 103.5, 115.6, 86.7, 0.32, 1.54, 2.24,

2.13, 1.88, 2.63, 2.25, 2.53, 2.25, 2.75, 2.49,

2.99, 3.08, 2.93, 3.51, 3.54, 70.0, 91.1, 61.4,

47.9, 29.9, 14.9, 4.96, 4.23, 2.79, 2.79, 2.02,

2.00, 0.95, 2.02, 2.22, 2.22, 2.70, 4.00, 7.39,

12.8, 0.00, 34.5, 86.5, 93.5, 79.1, 29.4, 3.92,

1.63, 1.56, 1.06, 2.32, 1.68, 1.74, 1.48, 2.29,

2.01, 1.86, 1.71, 2.52, 2.14, 2.72, 2.74, 3.82,

3.02, 3.07, 2.68, 37.66, 44.7, 49.6, 60.4, 66.8,

63.7, 66.9, 64.1, 63.1, 56.5, 52.2, 47.6, 39.5,

37.1, 31.4].

(S1)

For the demonstration of BI and machine learning (ML) approach in 2.3.2, a total of 110 QoIs are used.
The QoIs correspond to 1 global load and 4 averaged local strain values measured at 22 frames in the
experiment and in the simulation. In this case, the weights were chosen such that the data points near the
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maximum load received a larger weight compared to the data points near the origin of the load-displacement
data. Also, the strain and load QoIs received equal weight overall. The weights used in Equation 1 for this
case are as follows:

w = [0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.00,

0.00, 0.01, 0.03, 0.03, 0.03, 0.03, 0.10, 0.03,

0.03, 0.03, 0.03, 0.10, 0.30, 0.30, 0.30, 0.30,

1.20, 0.35, 0.35, 0.35, 0.35, 1.40, 0.35, 0.35,

0.35, 0.35, 1.40, 0.35, 0.35, 0.35, 0.35, 1.40,

0.40, 0.40, 0.40, 0.40, 1.60, 0.40, 0.40, 0.40,

0.40, 1.60, 0.50, 0.50, 0.50, 0.50, 2.00, 0.50,

0.50, 0.50, 0.50, 2.00, 0.50, 0.50, 0.50, 0.50,

2.00, 0.50, 0.50, 0.50, 0.50, 2.00, 0.50, 0.50,

0.50, 0.50, 2.00, 0.50, 0.50, 0.50, 0.50, 2.00,

0.50, 0.50, 0.50, 0.50, 2.00, 0.50, 0.50, 0.50,

0.50, 2.00, 0.50, 0.50, 0.50, 0.50, 2.00, 0.50,

0.50, 0.50, 0.50, 2.00, 0.50, 0.50, 0.50, 0.50,

2.00, 0.38, 0.38, 0.38, 0.38, 1.50].

(S2)

Figure S1: Verification of machine learning surrogate model. In the machine learning terminology, this is often referred to as
model validation. (a) Strain QoI prediction from the fitted surrogate model compared with the output of the full simulation.
(b) Load QoI from the surrogate model compared to the simulation results.

2. Machine Learning Model Verification

The development of a surrogate model for predicting QoIs from arbitrary material parameters is described
in Section 2.2. The surrogate model is developed using kernel support vector machine (SVM), which is a
machine learning (ML) regression scheme. It is customary to verify a regression model by making predictions
on inputs which were not used in training the model. We use the term verification in this work in the sense of
Verification, validation, and uncertainty quantification VVUQ methodology [1]. In ML terminology, this is
often referred to as model validation. While cross-validation is one popular method of doing this, we chose to
run separate simulations using a set of material parameters and then validated the model on these separate
simulations. We ran 200 simulations with the diamond geometry identical to those described in Section

2
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2.3.2. These simulations used a range of material parameters uniformly sampled from the 95% credible
interval of the results described in Section 2.3.2. Then, we used the SVM regression model that was trained
on the library of 544 simulations and used it to predict the QoIs in 100 of these simulations. A comparison
of the QoIs obtained from the simulations and those predicted by the fitted model is shown in Figure S1.
Separate plots are shown for the strain QoI and load QoI since their values are of different magnitudes.
The fitted regression model made excellent predictions for these data with R2 = 0.99993. Based on this
verification study, the SVM regression model appears to be accurate.

3. Effect of Prior on the Results

In BI, the choice of prior distribution can influence the predicted posterior distribution [2]. While a
rigorous study of the influence of prior on the results is not within the scope of this work, we performed
a limited study to understand the effect of prior distribution on the calibrated material parameters. We
considered four types of prior distributions for the material parameters: one flat prior and three Gaussian
priors with varying mean and standard deviation. Starting with these priors, we determined the posterior
distributions using the same procedure described in Section 2.3.2. The results of this comparison are shown
in Figure S2. From the results, it is evident that the choice of prior did not have a significant impact on the
predicted posterior distribution in this material parameter calibration study.

4. Theoretical Calculation of Compression-Tension Plateau Ratio

The ratio of compression plateau stress to tension plateau stress in superelastic NiTi can be theoretically
approximated as a function of crystal orientation or texture using simple concepts from micromechanics
and crystallography. The plateau stresses are connected to the A ↔ M phase transformation induced by
an external stress. It is customary to model the phase transformation using a transformation condition.
Following Anand and Gurtin [3], a simple transformation condition can be written as,

Y i = b
i
0 · (C

e
T

e)mi
0 −

λT

θT
(θ − θT)−

N∑

j=1

hijνj for A → M. (S3)

Here Y i is the critical driving force for activating ith habit plane variant (hpv) system, bi0 and m
i
0 are

the shear direction and normal for the ith hpv in the global coordinate system, Ce is the elastic right
Cauchy-Green tensor, T e is the work conjugate to the Cauchy-Green elastic strain, λT is the latent heat
per unit volume for the A → M phase transformation, θ is the reference temperature, θT is the equilibrium
transformation temperature, hij is a transformation hardening parameter, νi is the volume fraction of the
ith hpv system, and N is the total number of hpvs modeled. The hpv elements (bi0,m

i
0) are material

parameters and can be derived using the crystallographic theory of martensite (CTM) [4] if the lattice
parameters for austenite and martensite phases are known. CTM typically furnishes these parameters in
the crystal coordinates (bic,m

i
c) and the transformation in the crystal and global coordinate systems can be

performed using: bi0 = Gbic,m
i
0 = Gmi

c. Here G is the orientation tensor. Assuming the case of infinitesimal
deformation, absence of transformation hardening, isothermal conditions, and uniaxial loading, all terms in
the equation above except the first term are constant and the transformation condition can be approximated
in the following form,

S
i
0 · σ = k. (S4)

Here Si0 = b
i
0 ⊗m

i
0 is the Schmid tensor for the ith hpv system and k is a constant. Moreover, k does not

depend whether loading is performed in tension vs. compression. At the onset of stress-induced A → M
phase transformation, it is reasonable to assume that the hpv with the largest component along the direction
of stress is activated. If the Schmid factor for this hpv system is defined as ST

0 for tensile loading and SC
0

3
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Figure S2: Effect of prior distribution on the sampled posterior probability distribution from the Markov Chain Monte Carlo
process. (a, c, e, g) Four prior distributions. (a) shows a flat prior and (c, e, g) show Gaussian priors with various mean and
standard deviation. (b, d, f, h) The sampled marginal posterior distributions. The prior does not significantly influence the
posterior.

for compressive loading, then we can write, ST
0 σUPS = SC

0 σCPS = k. Thus, the ratio of plateau stress in
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compression and the plateau stress in tension can be written as,

σCPS

σUPS

=
ST
0

SC
0

. (S5)

This calculation can be performed for any crystal orientation. The computer code for the calculation of S
is publicly available [5]. The ratio σCPS/σUPS for NiTi using typical lattice parameters is plotted on the
inverse pole figure in Figure S3. The rolling texture of a NiTi tube has a large [1 1 1] directional component
along the drawing direction. The calculated σCPS/σUPS ratio for tube is thus close to 1.5. For a plate or
sheet, the texture along rolling direction has a large [1 1 0] component. The calculated ratio for this case is
close to 1.0.

Figure S3: The ratio of compression plateau stress to tension plateau stress based on crystallographic calculations.

5. Experiment-Simulation Comparison of All Strain Components

The calibration scheme presented in this work used the shear strain component (εxy) as a QoI. We also
attempted to perform the calibration using the full 2D surface strain tensor as the QoI. However, the latter
approach did not furnish more accurate results compared to shear strains. We primarily attribute this to
the inability of the finite element model used in this study to capture the normal strain components. A
comparison of all simulated strain components and experimentally measured strain components (using DIC)
in regions of interest 1 to 4 as a function of the loading step is shown in Figure S4. These data are for the
diamond specimen discussed in Section 3.2. We calculated a least-squared fit for the six material parameters
using the approach described in Section 2, Equation 1. We calculated mean absolute percentage error
(MAPE) between the DIC measurement and the least-square fit for each strain component in each region of
interest of the diamond sample (See Figure 2(c)). The total MAPE for εxx strain components summed over
the four regions of interest was 152.5. MAPE for εyy summed over the four regions of interest was 462.7,
and MAPE for εxy strain component was 105.3 when summed over the same four regions of interest. This
shows that the underlying constitutive law was able to capture the shear strains more accurately compared
to the normal strains. Based on this observation, it appears plausible that the calibration using the full
strain tensor did not furnish more accurate results compared to the calibration using just the shear strain
component.
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Figure S4: Comparison of the simulated strain components and the DIC strain measurement of the individual strain components
for the diamond sample described in Section 3.2. (a1-a4) Normal strain (εxx) in regions of interest 1 - 4 . (b1-b4) Normal

strain (εyy) in regions of interest 1 - 4 . (c1-c4) Shear strain (εxy) in regions of interest 1 - 4 . In all cases, the X axis is the
loading step. Data was extracted at twenty two points along the tensile loading curve for the diamond sample. The gray curves
correspond to all simulations in the library. The red curve corresponds to the DIC strain measurement. The dashed blue curve
corresponds to the calibrated parameters using a least-squared approach. MAPE values for the DIC and least-squared fit are
listed in each plot. Overall, the shear strains show lower MAPE values.
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