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ABSTRACT
This paper and accompanying Python/C++ Framework is the 
product of the authors perceived problems with narrow 
(Discrimination based) AI. (Artificial Intelligence) The 
Framework attempts to develop a genetic transfer of experience 
through potential structural expressions using a common 
regulation/exchange value (‘energy’) to create a model whereby 
neural architecture and all unit processes are co-dependently 
developed by genetic and real time signal processing influences; 
successful routes are defined by stability of the spike distribution 
per epoch which is influenced by genetically encoded 
morphological development biases.
These principles are aimed towards creating a diverse and robust 
network that is capable of adapting to general tasks by training 
within a simulation designed for transfer learning to other 
mediums at scale.

Index Terms-  Artificial, Energy, Entropy, Framework, General,
Generative, Information, Intelligence, Model.
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INTRODUCTION

Sections ‘Genetics and genetic algorithms’ ‘Nature of 
information and complexity’ and ‘Artificial and biological 
neurons’ are the authors observations and comparisons of neural 
computing from varying perspectives, this attempts to explain the
reasoning behind the EDeN framework development. ‘ EDeN 
Framework and core process overview’ details application of this
conjecture to a reduced cycle of operations designed to create a 
network of ‘behavior driven intelligence’. 
The section ‘Artificial and Biological Neurons’ details a neuron 
model (‘Process node’) that is evaluated by a common exchange 
value ‘Stability index’ which is assigned as a result of how well 
the node can manage energy locally over training ( influenced by
product of historically successful morphology changes that are 
genetically encoded (‘Functome’) ). 

INTUITION 
I. The assumption that a neuron (process node) competes to 
survive in return of ‘being a good signal processor’ by which 
information can be dimensionally reduced and modeled. 
Mathematically this is the attempt to remove dependency on a 

global minimization function , replacing it with behavior that is 
translated to each unit differently depending on location and 
required processes of it’s own ‘survival’, separate from global 
entity training objectives.

II. The morphology and signal processing properties of the 
network are created from common principles/rules (as opposed to
CNN architectures where architecture is manually defined in 
specialized layers) [Ref 11].

III. Genetics (‘Functome’)  is expressed as morphological biases 
from internal environmental evaluations; ensuring a relationship 
between all development steps. This provides a mechanism for 
internally reasoned structural and functional definitions that are 
recorded for further cross domain utilisation and 
intergenerational expression.

IV. As dependency of a high entropy structure increases. As does
a need for energy efficiency of it’s operation. Once critical 
boundaries of this operation is met, structural representation of 
this process is maximized.

A high level diagram of the developmental process:

https://doi.org/10.31224/osf.io/dfyzn
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GENETICS AND GENETIC ALGORITHMS

In a typical GA (Genetic algorithm) [Ref 10] We create a base 
definition (gene) that is partially or completely randomised. A 
generation of genes are then tested against the desired outcome 
and mutated. (A specialized Monte Carlo method)
Generations are merged by a percentage and manipulated against
the results measured; leading to hopefully an exponentially 
appropriate solution.

Whilst this method with enough Compute/Time will eventually 
minimize, seemingly minor flaws in the loss functions, selection 
criteria often cause significant waste and fragility of the solution 
and result in increasing risk.

In the biological variant, expression of the gene is also encoded 
in the genome, with the crucial difference of encoded 
behavior/dependencies of the expression. This creates functional 
hierarchies that lead to further expression and regulation.
As a result, biological genetics do not suffer from over 
specialization to the point of brittle collapse under environment 
change due to linked dependencies and regulation in every 
encoded item; even with far more complex encoded behaviors 

over generations, only stable extensions to the base rule set that 
correctly operate previously successful regulation are 
maintained.
Encoded information is expressed based on feedback through the
existing environment (external and internal/( In contrast GA’s 
typically train within a narrow scope).
Post expression, manifested objects (E.G. Proteins) then operate 
within variance to also reinforce the environment expected of the
genome, supporting further expression/regulation.

In contrast GA's are severely limited compared to the biological 
which comprises of structure, growth and execution definitions, 
not simply randomized/mutated words.
For a more details on standard genetic algorithms please refer to 
[Ref 14]

NATURE OF INFORMATION AND COMPLEXITY

I. Example in modern computing
 The binary standard 8 bit byte. From which more abstract types 
such as float or long integers are constructed.
Base types interact through a common rule set (Logical (bit-
wise) or mathematical).
These processes are executed through registers which serve to 
perform ever higher abstractions through various languages.

All programming languages built on this architecture are 
interpretations and do not provide additional scope to the 
fundamental processes.

Notice that the bases of these types represent both base and 
structure, that is each bit of byte follows range for Br (Bit range) 
=> 2^Bi (Bit index). This bit range is hierarchically dependent on
the one preceding it.

II. How meaning is represented in compute
The order of precedence/use of the hierarchical building blocks 
defines how meaning is translated to human context.
This precedent is contractually arbitrary and then optimized 
through hardware. 
For example, a hard-drive typically stores less frequently 
accessed but more critically dependent information than RAM. 
(even more so with an L1 Cache).
Processing of meaning requires highest entropy components, and
storing requires lowest entropy components – HDD/SSD (Where 

structured information is most dense).

III. Biological Neuron comparison
In contrast, the brains most discrete transmission medium is an 
Ion. 
Whilst groups of ions can hold a variable charge unlike a binary 
hierarchy, their function within neurons is binary -operating ion 
gates ; this discrete action operating over analog thresholds of ion
concentrations resemble a compute architecture:
.Sodium and potassium ions to regulate charge as a response 
from direct electrical or neurotransmitter excitation (triggering an
in-balance).
.Once a charge differential between external and internal 
environment is beyond a given threshold, the neuron fires to the 
axon terminals, reinforced/regulated by the Myelin sheath 
produced by Shwann Cells; continuing the potassium/sodium 
propagation to final Calcium inflow and neurotransmitter[s] 
release or direct electrical stimulation.
.The general Intensity of the stimuli is reflected in more frequent
firings, where patterns of the stimuli reflect changes in the firing 
rate.
.In memory formation, groups of neurons grow to ‘replay’ 
memories of the past by generating the same collective output as 
before without the required chain of processed stimuli that 
created them -in other words an internal model, that is gradually 
more internally understood, (abstractedly similar to L1 to HDD 
process described in part 2 where clearly defined data structures 
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are encoded).
.The frequency of firing reflects the neural coding of the stimuli.
Various theories exist as to how this mapping encodes 
information precisely, however it is clear that the coding models 
the abstract information locally, with minor influences from 
global state; as apposed to back propagation in CNN systems: 
where error is translated to all layers. Refs [8], [9] and [12].

IV. Entropy and criticality
In both examples, points of high entropy correlate with least 
internally modeled information.
On the assumption that boundaries of hierarchical processes are 
defined by criticality of their operation. I propose the general rule
applies in both nature and engineered computation: (Intuition 
section part IV:)

Behavior driven minimization 

In deep learning, data is trained with a defined objective within a 
coordinate space set.
The results of training is then interpreted externally, as either an 
interface for the system or to assist in refinement of the 
continued training.
The assumption in this method of training is that data of some 
domain contains useful features, these features share common 
traits and can be binned. These bins are defined as a product of 
the requested minimization; training creates micro translations of
features and their representations into the output. 

Whilst this method works for simple solutions through a 
network, training for global minimization leads to information 
loss that would otherwise be useful in assisting specific 
inferences. 

All possible features of this complex domain are (assumed to be) 
within the model, however on testing a number of features 
happen to be contained within another, leading to less confidence
or even the complete opposite output.
Whilst humans are also susceptible to this; a hierarchy of 
importance reduces this effect.

By training for network activity when some degree of domain 
related information is present, micro features can be trained and 
combined to provide a flexible and more reliable inference.   

 For example if someone where to ask ‘Do you like my cat’ you 
are then biased visually towards looking for one, narrowing the 
scope of search criteria in an entirely different domain before 

utilising the visual model, in other words; the application of a 
binned behavior is regulated by another.

Given this selection, the minimized output must be made aware 
to the more global ‘selector’ in order to determine the more 
appropriate response, this

 required relationship is similar to the architecture of a GAN [Ref
16]; whereby discriminator informs the generator how close it is 
to the real data input.

 In contrast, an EDeN process node specialises to one or more 
stimuli by requiring less influence on the input dendrite terminals
to produce the same spike for a given pattern (More on this 
later).

Below depicts a high level control flow of this process:

Cross correlation of supportive data from multiple domains at 
different frequencies, combined with local reinforcement of non 
random signals per process node (or neuron) then removes the 
requirement for specific global minimization goals. 

In summary the pressure of the entities survival over time (more 
on stability index later)  trains for specialisation per domain 
required of it.

Training the entity for a given task is to provide a reacquiring set 
of inputs interlaced with expected noise/variance.
The effect of an output probe on the input must then change the 
action to input to repeat itself within minimal variance in order 
for the entity to specialize.

Internally this forces both a model of the input/output 
relationship and a means to ignore irrelevant patterns.

Entity Neural Grid (3D space)

I/O...

Internal self sti...

Output probesInput Links

Genetic encoding of...Genetic expressio...

EDeN Server running on Training data (E.g Lidar maps) EDeN Server running on Simulator (Unigine)

Real time transfer learning

Viewer does not support full SVG 1.1
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ARTIFICIAL AND BIOLOGICAL NEURONS

Artificial neurons work on the principle of a statically defined 
function/waveform that is then weighted at input set and singular 
output.
Results are evaluated through a loss function against the desired 
result from the end of the network; each neuron weight is 
adjusted to minimize the error against this output in relation to 
it’s function [Layers examples: Ref 11] Neurons within hidden 
layers are minimized against the final output function relative to 
connected neurons. This encoding abstraction gradually trains a 
system to transform (and discriminate) data; applying back 
propagation through chains of partial derivatives.

Biological neurons attenuate their frequency of the coding 
pattern with no direct links to the required outcome [REF 7]
This implies there is not a uniform function to each neuron (As 
with Specialized Deep learning Layers). But base rules of how 
morphology, and intra/extra cellular events regulate to produce 
this function intrinsically from local and global environment.

.Activation functions 
The common functions used in CNNs/Perceptrons operates in 
two dimensions and acts to exponentially decrease the effect of 
the weight summation beyond the mid-range values. In contrast 
to a biological neuron: both strength and frequency modulate 
[Ref 12] information. Neurotransmitter gradients,  dendrite/axon 
interactions (dynamic growth and pruning) provide many more 
options for specialization.

. Global Propagation dependency 
The ‘Hodgkin Huxley’  model, changes weights based on the 
error of the models output and the desired output.
This first makes all relationships inside the network strongly 
coupled to the information structure of the output,  error 
correcting based on the value local to the network and global. In 
other words translating/discriminating input into output. (CNN 
Layers equate to a complex convolution filter).
It is unclear to what degree biological neurons are directly 
dependent on their surroundings, however the myriad of studied 
morphology/genetic dependent processes suggest a more resilient
model than global ‘moment guidance’ methods used today. [Ref 
13 ].

.Historical Neuron encoding
A Hodgkin Huxley and common spiking neural models don’t 
encode the history of activation, they are updated iteratively to 
the immediate weight model.
In order to retain classification across multiple Input outputs, 
network models must therefore generalise results.

.Energy routing 
The EDeN Framework works to route ‘energy’ (a value that 
propagates over via Architectors and exchanged to the CEM , 
influencing energy propagation). Multiple execution passes build
energy values internal to a neuron (process node), while other 
process node functions regulate this behavior. This allows for 
multi variate processing based on both external and internal state,
(a kind of currency exchange). 

FRAMEWORK AND CORE PROCESS OVERVIEW

. The Neuron model: 
Inspired by Self information theory. (Ref 6). Data is received 
from the training environment and inflicts instability on a the 
neuron model, stimulating morphological response, leading to an 
incremental improvement in the minimization and internal 
modeling of data. 
The neuron produces an output after building a minimal energy 
value via internal weights and routers. These act to minimize a 
stability index to acceptable threshold values.

The morphology of the neuron model is represented as vector 
locations of the dendrites and axon terminals, this produces 
delays and transformations in signal propagation by exchanging 
energy with ‘transmitters’ or ‘architectors’ that are analogous to 
neurotransmitters and neuropeptides.

. The Neuron model: Update Method (Process node IO):
On DevelopNetwork() function call, Process Nodes adjust their 
models using the following variables

Ng = Neural Grid
Ei [E, v(XYZ)]= Energy at an input location To the Ngrid 
(Neural Grid); delivered by an input probe.
CEM = Currently Expressed Model (As a product of all neurites 
and soma process)

The CEM utilises the following components:
T[…]: An array of Axon Terminals – these modify the Process 
node output based on the propagation delay expected (Neural 
Grid Point Distance) from the source.
On activation, they release a Transmitter index payload as a 
Functome biased response from the  EnergyValue.
 D[…] An Array of Dentrites – these provide regulation to the 
CEM influence
Tt/At: Transmitter/Architector type, An Index and properties of 
the type if used by a Dentrite or Axon. (defined as TransArch 
payloads in code)
Variables unique to each specialisation determine the stimulation
provided by the transmitter or morphology influence from 
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architecture.
(This is designed to emulate the effect of ligand gates ION 
channel open/Closing on stimuli) and influence LTP like 
behaviour (long term potentiation).Gc[…]: An Array of Growth 
cones for each Dentrite or Axon that are regulated by the 
Functome expression. 
MiE Minimum energy store before a spike, a consistent misfiring
(or suppression) of the neuron due to forced response from 
extremes of energy will cause the stability of the neuron to 
decrease. (A tolerance of which causes pruning under phase 
control), this will result in random firings which do not filter out 
noise between correlated patterns observed by dendrite terminals.
Each Dentrite receives at least one TransmitterType, this type has
a response that either blocks or allows energy updates to the 
process node.
‘Architectors’ are released based on measured acceptance criteria
of a mutating Functome to provide structured improvement to 
process node morphology. 
-Referenced as ‘TransArch’ Payloads in the framework.

PWR 3D Tensors, (Propagation, Weight and Router)
Work to produce spikes across each Z axis value, training for 
spike response from input sets per process node (See more 
information under CEM processing section)

Generation/Discrimination states:
Generation occurs when the Process Node model requires less 
input stimulus to produce a previously encoded response than 
that required to produce the original  pattern. (This process 
begins to occur post spike when the route and related weight 
matrix has been correctly enforced).
This mechanism is also inspired by the prion theory of memory 
‘playback’ by which only a fraction of the abstracted stimuli is 
required to reproduce the same signals. 
Discrimination – the Process Node receives more inputs over an
epoch than it was previously trained for, (stability index is 
unchanged or decreases), the Process Node is adjusting to new 
patterned stimuli and attempts to incorporate it into its existing 
model. 

High level forward propagation of CEM:

.Current Energy Model (CEM) processing
The CEM acts to tune different stimuli to reinforce (or weaken) 
E at P[z].Given the propagation, weight and router Tensors 
(PWR) of dimensions X*Y*Z, where X == Y and Z is N, (N is 
user defined constraint), energy value E of a CEM where n is z 
index of an XY across the tensors.
Depicted right defines how PnE (Process node energy value) is 
determined.
A recursive algorithm
across z of Z until
PnE of the z plane is
above the minimum
threshold.
This triggers axon
terminal firing which
regulates this value by
TransArch exchange
to the external Neural
grid, at which point
all propagation values
are reset to 0, 
The Axon terminal
fires at delayed time
by decrementing
against the initial
distance from the
Neural container and
the axon terminal
location.
Note: Other
regulating mechanism
may be applied in the
future, as influence by
homeostatic
regulation in biology 
[ref 20]
Each router value (See R0 for router options) variable at n-1 xy 
plane on spike is updated to directly route to the spiking n plane 
if spike propagation energy  (PE) is above Minimum Energy 
(MinE). Otherwise the value is set to a random variable of the 
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Router options (E(R0)).

Updating the Stability index of the process node (PNSI) involves 
calculating the KL divergence across the previous Spike 
distribution (SD) and current SD per epoch, minus the decay rate 
(DR) if the process node is unresponsive.
This has the effect of pruning non responsive process nodes 
given input. Once a spike occurs during an epoch, the biases for 
the propagation reinforcements are tuned by standard SGD 
(Stochastic gradient descent) (The target vector being 
dynamically created on spike ) starting from the spiking z 
position, reinforcing (negative or positive) the dendrites.

This has the effect of reinforcing the particular router 
configuration to spike at the same z position in the future, but 
requiring less input from the dendrite terminals.
Meanwhile any other inputs that are received in different phases 
are propagated through first the previously reinforced 
router/weight configuration up to z, then beyond (As they may 
not reach the minimum energy threshold).

.Input/Output probes.
To avoid a globally propagated minimization target that would 
enforce bias over the processing units localized development, 
Inputs act as a standard vector update fields.  Whereas output 
probes are vector readers that are used in training or monitoring 
as part as physical entity simulation – with the intention of 
changing inputs in turn through, for example ‘muscle’ control 
(External to the Neural grid processes). 
Inputs that have repetition then increase the stability indexes 
across all neurons; forcing adaption or ‘death’.

. Genetic model and Functome overview
Authors note: 
The right abstraction to take in genetic representation was first 
motivated by  how a protein’s ‘process’ is encoded (through 
Amino acids → RNA expression..) into DNA.
 I decided against this due to the same behavior being plausibly 
expressed by morphology of the neuron and variation in signal 
model and vector based adjustment rather than computationally 
expensive micro instructions. 

The Functome acts to encode behavior during all stages of entity 
development as options for future re-expression.  
Each type and sub type within the framework contains a 
Functome reference. Examples include positions for the initial 
structure of an entity and action options.
Generations of Functome expression lead to increased 
adaptability of the process node architecture under different input

conditions.

 This improves both the regulation of axiom expression and the 
structure of the network in relation to the overall ability of the 
network to handle unpredictable inputs.  
An analogy to this methodology is to compare human and ape’s 
language ability: Humans clearly have a genetic affinity to the 
general architecture required of speech, which is then specialised 
at approximately the same age. 

.Functome Encoded actions
As the develop network phase is activated, ‘AvailableActions’ 
per Process node are scanned for by checking a prerequisite 
name which selectively utilities any additional ‘value’ and 
‘direction’ data.
The mutation update modifies a collection of these commands 
per process node, references of this data is then stored in the 
Functome.  

Action names:
.AxonTerminal_Add
.AxonTerminal_Remove
.Dentrite_Add
.Dentrite_Remove
.DirectConnection_Add
.DirectConnection_Remove
.AddTransmitterIndexCreator
.AddArchitectorIndexCreator
.AddTransmitterIndexResponse
.NeuroGenesis
.Apoptosis

Prerequisite names: 
.TransmitterIndexPresent
.Density
.AllowOn_EntityInternalClockMin
.DisableOn_EntityInternalClockMax
.ArchitectorIndexPresent
.Energy

. Initial growth structure and base growth
 We start with random available actions created per 
NeuralContainer, with random positions for cell body, axons and 
dendrite terminals encoded to the Functome.
On each epoch, neural containers execute these growth patterns, 
achieving changing stability index over time. Actions continue to
be evaluated and mutated during the develop phase of the 
execution. This in combination with following existing growth 
rules slowly adapts the morphology of the process node.
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Architectors
Similar to neurotransmitter, ‘Architectors’ (An analogy to 
neuropeptides)  exist to create new Process nodes and other static
influences on the neural grid given specific prerequisites that 
apply to all other Neurites. (Frequency and Density of 
Transmitter Indexes that provide discrete energy updates to the 
internal state of the unit).  Both Initial Axioms and Functome 
definitions provide details as to what Process nodes are produced
in terms of their activated actions. That is the assumption of the 
requirement to a given Neurite configuration before the 
environment argues for it’s existence against normal Growth 
cone calculations.
In contrast to Deep Learning or other static network definitions. 
This provides an element of ‘disposability’ to each Process node.

A requirement of this development exists in ref  [13], whereby 
higher abstraction in the visual domain correlates less with direct 
stimuli, however it’s unknown how this pattern projects to other 
existing biological domains or if what the boundary conditions of
dimension returns are.

Execution Phases Per Epoch

Propagate network
Output probes and input links propagate energy updates via 
transmitter exchange to each entity (see section ‘The Neuron 
model:’ above for more details). 
The CEM internally propagates it’s energy updates and set’s 
spike data  if it occurs.  This Spike data (Z index of the spike and
total XY Plane energy) is used to tune the routers, update the 
current spike distribution, which is then used to back propagate 
the CEM weights for specialisation.
‘TransArchPayloads’ are then exchanged from CEM onto the 
neural grid  based on the parent process nodes Functome encoded
instructions.

Evaluate and Prune Network
The Stability index is calculated for all process nodes, those that 
fall below the
 minimal threshold are removed – emulating neural pruning.

Develop Network
The remaining Process nodes are allowed to be modified based 
on Evaluate Network results, new process nodes and Neurite 
updates are executed. The active Functome functions continue to 
propagate within the process nodes.
Mutations are applied randomly to the growth rules/actions if the 
stability index is below a set minimum.

Workflow description 
Depicted right a high level diagram of how data is propagated 
between variations of the EdeN Server and EdeN Clients.

Given successful entity training. The Functome mutation is 
disabled.
A copy of this save state can either be ‘locked’ - whereby only 
the propagate phase is activated or used for further development 
under potentially different environments or within a 
simulation/embedded context with other entities with alternative 
specialized.

This system encourages transfer learning as a core principle of 
development.

Start EDeNServer

end

Wait for EDeNClient...

Connection request received

Transfer input and output probe setup data

Start Phase execution of entity

Received input link update request

Propagate data through entity, output to local output probes

Send output probe data to data server

Receive output probe update request

Data server uses output prob data to change environment

Connection terminated

Viewer does not support full SVG 1.1
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Closing comments and next steps
Whilst all mechanisms described above function as expected 
within the framework, large scale testing for trained entities 
performing complex tasks has yet to be achieved, further 
research and development work continued in this area and more 
papers are to follow with results.

It is believed the methods selected in this framework will provide
a better interface to general training without requiring specialist 
knowledge, leading to the authors desired goal of supportive/ 
duplicate systems to support sectors from healthcare to R&D and
manufacturing. 

REFERENCES AND INFLUENTIAL SOURCES

1 Thermodynamics for a network of neurons : Signatures of criticality.
Gaˇsper Tkaˇcik , Thierry Mora, Olivier Marre , Dario Amodei,  Michael J. 
Berry II, William Bialek
 https://arxiv.org/pdf/1407.5946.pdf
22-Jul-2014

2 Towards Cytoskeleton Computers. A proposal. 
Andrew Adamatzky , Jack Tuszynski , J¨org Pieper, Dan V. Nicolau, 
Rossalia Rinalndi , Georgios Sirakoulis, Victor Erokhin, J¨org 
Schnauß,David M. Smith 
https://arxiv.org/pdf/1810.04981.pdf 
11 Oct 2016

3 Glia - Neuron Interactions in Neurological Diseases: Testing Non-cell 
Autonomy in a Dish
Kathrin Meyer,  Brian K. Kaspar. 
(Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, 
USA 2Molecular, Cellular & Developmental Biology Graduate Program, 
The Ohio State University, Columbus, Ohio, USA 3Department of 
Neuroscience, The Ohio State University, Columbus, Ohio, USA) 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160
.pdf 
11 Feb 2018 

4 A Mathematical Theory of Communication
C.E Shannon 
http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
Jul/Oct 1948

5 Glial cells in neuronal network function 
Alfonso Araque* and Marta Navarrete
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313
.pdf 
12 Aug 2010~

6 Neural code – Neural self-information Theory on How Cell-Assembly 
Code Rises from Spike Time and Neuronal variability
Meng Li 1 and Joe Z. Tsien
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-
00236.pdf 
30, Aug, 2017

7 Pyramidal Neuron as Two-Layer Neural Network
Panayiota Poirazi*, Terrence Brannon and Bartlett W. Mel
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via
%3Dihub March 2003

8 Automatic fitting of spiking neuron models to electrophysiological 
recordings
https://www.frontiersin.org/articles/10.3389/neuro.11.002.2010/full 
05 March 2010

9 Maximum Entropy Approaches to Living Neural Networks 
Fang-Chin Yeh , Aonan Tang,, Jon P. Hobbs,Pawel Hottowy, Wladyslaw 
Dabrowski , Alexander Sher, Alan Litke, John M. Beggs 
http://www.beggslab.com/uploads/1/0/1/7/101719922/19yehetal2010.pdf 
2010

10 Learning with Genetic Algorithms: An Overview
Kenneth De Jong
https://link.springer.com/content/pdf/10.1007%2FBF00113894.pdf 
15 Jan 1998 

11 List of Deep Learning Layers
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-
layers.html 
Revision 2019

12 Single Neurons may encode simultaneous stimuli by switching between 
activity patterns
Valeria C. Caruso , Jeff T. Mohl, Christopher Glynn , Jungah Lee ,Shawn 
M. Willett , Azeem Zaman, Akinori F. Ebihara , Rolando Estrada, Winrich 
A. Freiwald,Surya T. Tokdar, & Jennifer M. Groh1
https://www.nature.com/articles/s41467-018-05121-8.pdf 
2018

13 A large-scale, standardized physiological survey reveals higher order 
coding throughout the mouse visual cortex
Allen Institute for Brain science, Seattle
https://www.biorxiv.org/content/10.1101/359513v1.full 

14 Optimizing gradient descent
http://ruder.io/optimizing-gradient-descent/     
19 January 2016

15 On the practical usage of genetic algorithms in ecology and evolution 
Steven Hamblin
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-
210X.12000

16 Dynamic routing between Capsules
Geoffry E. Hinton
https://arxiv.org/pdf/1710.09829.pdf 

17 Generative Adversarial nets
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David 
Warde-Farley, Sherjil Ozair , Aaron Courville, Yoshua Bengio
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf 

18 The Sodium ‘‘Leak’’ Has Finally Been Plugged 
Terrance P. Snutch1, * and Arnaud Monteil2 1Michael Smith Laboratories, 
University of British Columbia, Vancouver, BC, Canada V6T 1Z4 2 Institut
de Ge´ nomique Fonctionnelle, CNRS UMR5203 - INSERM U661 - 
Universite´ s Montpellier I et II, De´ partement de Physiologie, 34094 
Montpellier Cedex 5, France 
https://www.cell.com/action/showPdf?pii=S0896-6273%2807%2900339-X

19 Large Scale High-Resolution Land Cover Mapping with Multi-Resolution
Data. Proceedings of the 2019 Conference on Computer Vision and 
Pattern Recognition (CVPR 2019).
Robinson C, Hou L, Malkin K, Soobitsky R, Czawlytko J, Dilkina B, Jojic 
N. 
https://www.microsoft.com/en-us/ai/ai-for-earth
2019

20 The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses
Gina G. Turrigiano

https://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2834419
31 Oct 2008

Authors

  Jamie Nicholas Shelley, Optishell Consultancy

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419
https://www.microsoft.com/en-us/ai/ai-for-earth
https://www.cell.com/action/showPdf?pii=S0896-6273(07)00339-X
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1710.09829.pdf
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
http://ruder.io/optimizing-gradient-descent/
https://www.biorxiv.org/content/10.1101/359513v1.full
https://www.nature.com/articles/s41467-018-05121-8.pdf
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://link.springer.com/content/pdf/10.1007%2FBF00113894.pdf
http://www.beggslab.com/uploads/1/0/1/7/101719922/19yehetal2010.pdf
https://www.frontiersin.org/articles/10.3389/neuro.11.002.2010/full
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via%3Dihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-00236.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-00236.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313.pdf
http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160.pdf
https://arxiv.org/pdf/1810.04981.pdf
https://arxiv.org/pdf/1407.5946.pdf

	Energy Decay Network (EDeN)
	Jamie Nicholas Shelley

	GENETICS AND GENETIC ALGORITHMS
	14 Optimizing gradient descent http://ruder.io/optimizing-gradient-descent/ 19 January 2016
	15 On the practical usage of genetic algorithms in ecology and evolution Steven Hamblin https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
	16 Dynamic routing between Capsules Geoffry E. Hinton https://arxiv.org/pdf/1710.09829.pdf
	17 Generative Adversarial nets Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair , Aaron Courville, Yoshua Bengio https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
	18 The Sodium ‘‘Leak’’ Has Finally Been Plugged Terrance P. Snutch1, * and Arnaud Monteil2 1Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 2 Institut de Ge´ nomique Fonctionnelle, CNRS UMR5203 - INSERM U661 - Universite´ s Montpellier I et II, De´ partement de Physiologie, 34094 Montpellier Cedex 5, France https://www.cell.com/action/showPdf?pii=S0896-6273%2807%2900339-X

	20 The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses Gina G. Turrigiano https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419 31 Oct 2008

