
Version 3.0 Last updated: 28/12/2021

Energy Decay Network (EDeN)
Jamie Nicholas Shelley

Optishell consultancy

DOI: 10.31224/osf.io/dfyzn

ABSTRACT
This paper and accompanying Python/C++ Framework is the
product of the authors perceived problems with narrow
(Discrimination based) AI. (Artificial Intelligence) The
Framework attempts to develop a genetic transfer of experience
through potential structural expressions using a common
regulation/exchange value (‘energy’) to create a model whereby
neural architecture and all unit processes are co-dependently
developed by genetic and real time signal processing influences;
successful routes are defined by stability of the spike distribution
per epoch which is influenced by genetically encoded
morphological development biases.
These principles are aimed towards creating a diverse and robust
network that is capable of adapting to general tasks by training
within a simulation designed for transfer learning to other
mediums at scale.

Index Terms- Artificial, Energy, Entropy, Framework, General,
Generative, Information, Intelligence, Model.

Contents

INTRODUCTION

Sections ‘Genetics and genetic algorithms’ ‘Nature of
information and complexity’ and ‘Artificial and biological
neurons’ are the authors observations and comparisons of neural
computing from varying perspectives, this attempts to explain the
reasoning behind the EDeN framework development. ‘ EDeN
Framework and core process overview’ details application of this
conjecture to a reduced cycle of operations designed to create a
network of ‘behavior driven intelligence’.
The section ‘Artificial and Biological Neurons’ details a neuron
model (‘Process node’) that is evaluated by a common exchange
value ‘Stability index’ which is assigned as a result of how well
the node can manage energy locally over training (influenced by
product of historically successful morphology changes that are
genetically encoded (‘Functome’)).

INTUITION
I. The assumption that a neuron (process node) competes to
survive in return of ‘being a good signal processor’ by which
information can be dimensionally reduced and modeled.
Mathematically this is the attempt to remove dependency on a

global minimization function , replacing it with behavior that is
translated to each unit differently depending on location and
required processes of it’s own ‘survival’, separate from global
entity training objectives.

II. The morphology and signal processing properties of the
network are created from common principles/rules (as opposed to
CNN architectures where architecture is manually defined in
specialized layers) [Ref 11].

III. Genetics (‘Functome’) is expressed as morphological biases
from internal environmental evaluations; ensuring a relationship
between all development steps. This provides a mechanism for
internally reasoned structural and functional definitions that are
recorded for further cross domain utilisation and
intergenerational expression.

IV. As dependency of a high entropy structure increases. As does
a need for energy efficiency of it’s operation. Once critical
boundaries of this operation is met, structural representation of
this process is maximized.

A high level diagram of the developmental process:

https://doi.org/10.31224/osf.io/dfyzn

Version 3.0 Last updated: 28/12/2021

GENETICS AND GENETIC ALGORITHMS

In a typical GA (Genetic algorithm) [Ref 10] We create a base
definition (gene) that is partially or completely randomised. A
generation of genes are then tested against the desired outcome
and mutated. (A specialized Monte Carlo method)
Generations are merged by a percentage and manipulated against
the results measured; leading to hopefully an exponentially
appropriate solution.

Whilst this method with enough Compute/Time will eventually
minimize, seemingly minor flaws in the loss functions, selection
criteria often cause significant waste and fragility of the solution
and result in increasing risk.

In the biological variant, expression of the gene is also encoded
in the genome, with the crucial difference of encoded
behavior/dependencies of the expression. This creates functional
hierarchies that lead to further expression and regulation.
As a result, biological genetics do not suffer from over
specialization to the point of brittle collapse under environment
change due to linked dependencies and regulation in every

encoded item; even with far more complex encoded behaviors
over generations, only stable extensions to the base rule set that
correctly operate previously successful regulation are
maintained.
Encoded information is expressed based on feedback through the
existing environment (external and internal/(In contrast GA’s
typically train within a narrow scope).
Post expression, manifested objects (E.G. Proteins) then operate
within variance to also reinforce the environment expected of the
genome, supporting further expression/regulation.

In contrast GA's are severely limited compared to the biological
which comprises of structure, growth and execution definitions,
not simply randomized/mutated words.
For a more details on standard genetic algorithms please refer to
[Ref 14]

NATURE OF INFORMATION AND COMPLEXITY

I. Example in modern computing
 The binary standard 8 bit byte. From which more abstract types
such as float or long integers are constructed.
Base types interact through a common rule set (Logical (bit-
wise) or mathematical).
These processes are executed through registers which serve to
perform ever higher abstractions through various languages.

All programming languages built on this architecture are
interpretations and do not provide additional scope to the
fundamental processes.

Notice that the bases of these types represent both base and
structure, that is each bit of byte follows range for Br (Bit range)
=> 2^Bi (Bit index). This bit range is hierarchically dependent on
the one preceding it.

II. How meaning is represented in compute
The order of precedence/use of the hierarchical building blocks
defines how meaning is translated to human context.
This precedent is contractually arbitrary and then optimized
through hardware.
For example, a hard-drive typically stores less frequently
accessed but more critically dependent information than RAM.
(even more so with an L1 Cache).
Processing of meaning requires highest entropy components, and
storing requires lowest entropy components – HDD/SSD (Where
structured information is most dense).

III. Biological Neuron comparison
In contrast, the brains most discrete transmission medium is an
Ion.
Whilst groups of ions can hold a variable charge unlike a binary
hierarchy, their function within neurons is binary -operating ion
gates ; this discrete action operating over analog thresholds of ion
concentrations resemble a compute architecture:
.Sodium and potassium ions to regulate charge as a response
from direct electrical or neurotransmitter excitation (triggering an
in-balance).
.Once a charge differential between external and internal
environment is beyond a given threshold, the neuron fires to the
axon terminals, reinforced/regulated by the Myelin sheath
produced by Shwann Cells; continuing the potassium/sodium
propagation to final Calcium inflow and neurotransmitter[s]
release or direct electrical stimulation.
.The general Intensity of the stimuli is reflected in more frequent
firings, where patterns of the stimuli reflect changes in the firing
rate.
.In memory formation, groups of neurons grow to ‘replay’
memories of the past by generating the same collective output as
before without the required chain of processed stimuli that
created them -in other words an internal model, that is gradually
more internally understood, (abstractedly similar to L1 to HDD
process described in part 2 where clearly defined data structures
are encoded).
.The frequency of firing reflects the neural coding of the stimuli.

Version 3.0 Last updated: 28/12/2021

Various theories exist as to how this mapping encodes
information precisely, however it is clear that the coding models
the abstract information locally, with minor influences from
global state; as apposed to back propagation in CNN systems:
where error is translated to all layers. Refs [8], [9] and [12].

IV. Entropy and criticality
In both examples, points of high entropy correlate with least
internally modeled information.
On the assumption that boundaries of hierarchical processes are
defined by criticality of their operation. I propose the general rule
applies in both nature and engineered computation: (Intuition
section part IV:)

Behavior driven minimization

In deep learning, data is trained with a defined objective within a
coordinate space set.
The results of training is then interpreted externally, as either an
interface for the system or to assist in refinement of the
continued training.
The assumption in this method of training is that data of some
domain contains useful features, these features share common
traits and can be binned. These bins are defined as a product of
the requested minimization; training creates micro translations of
features and their representations into the output.

Whilst this method works for simple solutions through a
network, training for global minimization leads to information
loss that would otherwise be useful in assisting specific
inferences.

All possible features of this complex domain are (assumed to be)
within the model, however on testing a number of features
happen to be contained within another, leading to less confidence
or even the complete opposite output.
Whilst humans are also susceptible to this; a hierarchy of
importance reduces this effect.

By training for network activity when some degree of domain
related information is present, micro features can be trained and
combined to provide a flexible and more reliable inference.

 For example if someone where to ask ‘Do you like my cat’ you
are then biased visually towards looking for one, narrowing the
scope of search criteria in an entirely different domain before

utilising the visual model, in other words; the application of a
binned behavior is regulated by another.

Given this selection, the minimized output must be made aware
to the more global ‘selector’ in order to determine the more
appropriate response, this

 required relationship is similar to the architecture of a GAN [Ref
16]; whereby discriminator informs the generator how close it is
to the real data input.

 In contrast, an EDeN process node specialises to one or more
stimuli by requiring less influence on the input dendrite terminals
to produce the same spike for a given pattern (More on this

later).

Below depicts a high level control flow of this process:

Cross correlation of supportive data from multiple domains at
different frequencies, combined with local reinforcement of non
random signals per process node (or neuron) then removes the
requirement for specific global minimization goals.

In summary the pressure of the entities survival over time (more
on stability index later) trains for specialisation per domain
required of it.

Training the entity for a given task is to provide a reacquiring set
of inputs interlaced with expected noise/variance.
The effect of an output probe on the input must then change the
action to input to repeat itself within minimal variance in order
for the entity to specialize.

Internally this forces both a model of the input/output
relationship and a means to ignore irrelevant patterns.

Entity Neural Grid (3D space)

I/O...

Internal self sti...

Output probesInput Links

Genetic encoding of...Genetic expressio...

EDeN Server running on Training data (E.g Lidar maps) EDeN Server running on Simulator (Unigine)

Real time transfer learning

Viewer does not support full SVG 1.1

Version 3.0 Last updated: 28/12/2021

ARTIFICIAL AND BIOLOGICAL NEURONS

Artificial neurons work on the principle of a statically defined
function/waveform that is then weighted at input set and singular
output.
Results are evaluated through a loss function against the desired
result from the end of the network; each neuron weight is
adjusted to minimize the error against this output in relation to
it’s function [Layers examples: Ref 11] Neurons within hidden
layers are minimized against the final output function relative to
connected neurons. This encoding abstraction gradually trains a
system to transform (and discriminate) data; applying back
propagation through chains of partial derivatives.

Biological neurons attenuate their frequency of the coding
pattern with no direct links to the required outcome [REF 7]
This implies there is not a uniform function to each neuron (As
with Specialized Deep learning Layers). But base rules of how
morphology, and intra/extra cellular events regulate to produce
this function intrinsically from local and global environment.

.Activation functions
The common functions used in CNNs/Perceptrons operates in
two dimensions and acts to exponentially decrease the effect of
the weight summation beyond the mid-range values. In contrast
to a biological neuron: both strength and frequency modulate
[Ref 12] information. Neurotransmitter gradients, dendrite/axon
interactions (dynamic growth and pruning) provide many more
options for specialization.

. Global Propagation dependency
The ‘Hodgkin Huxley’ model, changes weights based on the
error of the models output and the desired output.
This first makes all relationships inside the network strongly
coupled to the information structure of the output, error
correcting based on the value local to the network and global. In
other words translating/discriminating input into output. (CNN
Layers equate to a complex convolution filter).
It is unclear to what degree biological neurons are directly
dependent on their surroundings, however the myriad of studied
morphology/genetic dependent processes suggest a more resilient
model than global ‘moment guidance’ methods used today. [Ref
13].

.Historical Neuron encoding
A Hodgkin Huxley and common spiking neural models don’t
encode the history of activation, they are updated iteratively to
the immediate weight model.
In order to retain classification across multiple Input outputs,
network models must therefore generalise results.

.Energy routing
The EDeN Framework works to route ‘energy’ (a value that
propagates over via Architectors and exchanged to the CEM ,
influencing energy propagation). Multiple execution passes build
energy values internal to a neuron (process node), while other
process node functions regulate this behavior. This allows for
multi variate processing based on both external and internal state,
(a kind of currency exchange).

FRAMEWORK AND CORE PROCESS OVERVIEW

. The Neuron model:
Inspired by Self information theory. (Ref 6). Data is received
from the training environment and inflicts instability on a the
neuron model, stimulating morphological response, leading to an
incremental improvement in the minimization and internal
modeling of data.
The neuron produces an output after building a minimal energy
value via internal weights and routers. These act to minimize a
stability index to acceptable threshold values.

The morphology of the neuron model is represented as vector
locations of the dendrites and axon terminals, this produces
delays and transformations in signal propagation by exchanging
energy with ‘Transmitters’ or ‘Architectors’ that are analogous to
neurotransmitters and neuropeptides.

. The Neuron model: Update Method (Process node IO):
On DevelopNetwork() function call, Process Nodes adjust their
models using the following variables

Ng = Neural Grid
Ei [E, v(XYZ)]= Energy at an input location To the Ngrid
(Neural Grid); delivered by an input probe.
CEM = Currently Expressed Model (As a product of all neurites
and soma process)

The CEM utilises the following components:
T[…]: An array of Axon Terminals
On activation, they release a Transmitter index payload as a
Functome biased response from the EnergyValue.
 D[…] An Array of Dentrites – these provide regulation to the
CEM influence
Tt/At: Transmitter/Architector type, An Index and properties of
the type if used by a Dentrite or Axon. (defined as TransArch
payloads in code)
Variables unique to each specialisation determine the stimulation
provided by the transmitter or morphology influence from
architecture.

Version 3.0 Last updated: 28/12/2021

(This is designed to emulate the effect of ligand gates ION
channel open/Closing on stimuli) and influence LTP like
behaviour (long term potentiation).Gc[…]: An Array of Growth
cones for each Dentrite or Axon that are regulated by the
Functome expression.
MiE Minimum energy store before a spike, a consistent misfiring
(or suppression) of the neuron due to forced response from
extremes of energy will cause the stability of the neuron to
decrease. (A tolerance of which causes pruning under phase
control), this will result in random firings which do not filter out
noise between correlated patterns observed by dendrite terminals.
Each Dentrite receives at least one TransmitterType, this type has
a response that either blocks or allows energy updates to the
process node.
‘Architectors’ are released based on measured acceptance criteria
of a mutating Functome to provide structured improvement to
process node morphology.
-Referenced as ‘TransArch’ Payloads in the framework.

PWR 3D Tensors, (Propagation, Weight and Router)
Work to produce spikes across each Z axis value, training for
spike response from input sets per process node (See more
information under CEM processing section)

Generation/Discrimination states:
Generation occurs when the Process Node model requires less
input stimulus to produce a previously encoded response than
that required to produce the original pattern. (This process
begins to occur post spike when the route and related weight
matrix has been correctly enforced).
This mechanism is also inspired by the prion theory of memory
‘playback’ by which only a fraction of the abstracted stimuli is
required to reproduce the same signals.
Discrimination – the Process Node receives more inputs over an
epoch than it was previously trained for, (stability index is
unchanged or decreases), the Process Node is adjusting to new
patterned stimuli and attempts to incorporate it into its existing
model.

High level diagram of forward propagation through the CEM:

.Current Energy Model (CEM) processing
The CEM acts to tune different stimuli to reinforce (or weaken)
E at P[z].Given the propagation, weight and router Tensors
(PWR) of dimensions X*Y*Z, where X == Y and Z is N, (N is
user defined constraint), energy value E of a CEM where n is z
index of an XY across the tensors.
Depicted right
defines how PnE
(Process node energy
value) is determined.
A recursive
algorithm across z of
Z until PnE of the z
plane is above the
minimum threshold.
This triggers axon
terminal firing which
regulates this value
by TransArch
exchange to the
external Neural grid,
at which point all
propagation values
are reset to 0,
All Axon terminals
are executed as
immediately
releasing
transArchPayloads to
the Neural Grid .
Note: Other
regulating
mechanism may be
applied in the future,
as influence by
homeostatic
regulation in biology
[ref 20]
Each router value (See R0 for router options) variable at n-1 xy
plane on spike is updated to directly route to the spiking n plane
if spike propagation energy (PE) is above Minimum Energy
(MinE). Otherwise the value is set to a random variable of the
Router options (E(R0)).

Process node container

CEM
Axon Terminal Tran...

Energy Accomulation...

Dentrite terminals exc...

Current...Bias MatrixRoute Matrix

Viewer does not support full SVG 1.1

ROx=
❑ Ro010 Ro020
❑ Ro011 Ro021
❑ Ro012 Ro022

RO y=
❑ Ro110 Ro120
❑ ❑ Ro121
❑ Ro112 Ro122

RO z=
❑ Ro210 Ro220
❑ Ro211 Ro221
❑ Ro212 Ro222

Rxyz∈RO

PEn=∑
z=0

z=n

{At (PnE z−1)+ ∑
x=0 , y=0

x=X , y=Y

Pxyz}

Rxyz∈{0,1}
W xyz=[0,1]

PExyz=W xyzRxyz

PNSD={x>0∣x∈ℝ}
DR={x>0∣x∈ℝ}

Assuming ∑
i=0

|PNSD|

(PNSD−1i−PNSDi)≥0

PN SI=
1

max((KL(PNSD−1|PNSD)) ,1)

Rxyn−1=f (PEn)={E (RO) ,(PEn<MinE)
Ro121 ,(PEn≥MinE) }

Processnode internal Transfer Function :

ϕ (ν)= 1
1+exp(−(Pxyz∗W xyz))

−DR

CEM Tuning diagram

Updated RBP (Route bias and propagation values at xyz)

Z

Spike (E(z == n) >= Emin)

X

Y

Internal Bias ba...Positively Reinforced Unused or pre...

Negatively Reinforced

Viewer does not support full SVG 1.1

Version 3.0 Last updated: 28/12/2021

On forward propagation, the transfer function (currently sigmoid
transfer function) minuses the decay rate (DR) (Seen above) as it
continues through the Process node.
This has the effect of having a ‘cost’ for propagation and only
allowing strong reinforcement of the forward propagation to
reach the spiking z. Unlike deep learning methods, the transfer
function receives only one input (dictated by it’s router).

Once a spike occurs during an epoch, the biases for the
propagation reinforcements are tuned by standard Stochastic
gradient descent starting from the spiking z position, reinforcing
(negative or positive) the dendrites.

Neurotransmitter and neuropeptide release and

Given a complete picture of neuropeptide regulation in biological
systems is not yet understood, the frameworks ‘Architectors’
provide a loose analogy, in that they regulate long term
morphological impacts as opposed to the immediate effects of
neurotransmitters. Current research suggests neuropeptides are
managed by two key factors:
.Production from active genes based on the developmental stage
of the organism
.Released when the state of the host neuron undergoes non
standard spiking from their average.
As such, if a spike occurs ,a neurotransmitter index is released,
with a check of the spike frequency to also release an
Architector. ‘Actions’ are then executed based on Architectors
properties received by the post synaptic dendrite.
Additionally, a hash exists per unique process node to help
provide explicit characteristics and traceability of successful
morphological configurations which are a result of allowed
‘Action’ activation (an analogy to active genes per cell type).

Spike goal back propagation creation
Unlike Deep learning; the goal is created dynamically on Spike
in reference to the position of the spike along the Z axis, where
the target is the propagation values at the last Z spiking plane. If
the Process node measured stability drops below a threshold, the
back prop goal is updated to the Z spiking plane propagation
values of the current spike.

Whilst the CEM tensors act as classical Deep
Learning/Perceptron ‘neurons’, the router matrix configuration
requires only one error calculation, as opposed to the common
fully connected layer configuration requiring many, in this
respect the process is more closely modelled to a biological
equivalent, computationally.

Updating the Stability index of the process node (PNSI) involves
calculating the KL divergence across the previous Spike
distribution (SD).

This has the effect of reinforcing the particular router
configuration to spike at the same z position in the future, but
requiring less input from the dendrite terminals in order to
maintain the same z firing position (Otherwise stability index
drops)
Meanwhile any other inputs that are received in different phases
are propagated through first the previously reinforced
router/weight configuration up to z, then beyond (As they may
not reach the minimum energy threshold).

.Input/Output probes.
To avoid a globally propagated minimization target that would
enforce bias over the processing units localized development,
Inputs act as a standard vector update fields. Whereas output
probes are vector readers that are used in training or monitoring
as part as physical entity simulation – with the intention of
changing inputs in turn through, for example ‘muscle’ control
(External to the Neural grid processes).
Inputs that have repetition then increase the stability indexes
across all neurons; forcing adaption or ‘death’.

. Genetic model and Functome overview
Authors note:
The right abstraction to take in genetic representation was first
motivated by how a protein’s ‘process’ is encoded (through
Amino acids → RNA expression..) into DNA.
 I decided against this due to the same behavior being plausibly
expressed by morphology of the neuron and variation in signal
model and vector based adjustment rather than computationally
expensive micro instructions.

The Functome acts to encode behavior during all stages of entity
development as options for future re-expression.
Each type and sub type within the framework contains a
Functome reference. Examples include positions for the initial
structure of an entity and action options.
Generations of Functome expression lead to increased
adaptability of the process node architecture under different input
conditions.

 This improves both the regulation of axiom expression and the
structure of the network in relation to the overall ability of the
network to handle unpredictable inputs.
An analogy to this methodology is to compare human and ape’s
language ability: Humans clearly have a genetic affinity to the
general architecture required of speech, which is then specialised
at approximately the same age.

Version 3.0 Last updated: 28/12/2021

.Functome Encoded actions
As the develop network phase is activated, ‘AvailableActions’
per Process node are scanned for by checking a prerequisite
name and property constraints.
The mutation update modifies a collection of these commands
per process node, references of this data is then stored in the
Functome.

Action types:
.AxonTerminal_AddNew
.AxonTerminal_RemoveRandom
.Dentrite_AllowNew
.Dentrite_RemoveRandom
.AllowTransmitterIndexProduction
.AddArchitectorIndexProduction
.StimulateNeuroGenesis
.Apoptosis

Prerequisite type names:

.ArchitectorPresent

.TransmitterPresent

.ArchitectorPresentPayloadCount

.TransmitterPresentPayloadCount

.AllowOn_ProcessNodeClockRange

.AllowOn_ClockFrequency

.EnergyRequirement

.EnabledAfterEntityClock

Each Action is executed on the ‘Develop’ phase given perquisite
type and it’s meta data matches for a given action, or on
Architectors received by a given process node at the propagation
stage.

. Initial growth structure and base growth
 We start with random available actions created per
NeuralContainer, with random positions for cell body, axons and
dendrite terminals encoded to the Functome.
On each epoch, neural containers execute these growth patterns,
achieving changing stability index over time. Actions continue to
be evaluated and mutated during the develop phase of the
execution. This in combination with following existing growth
rules slowly adapts the morphology of the process node.

Architectors
Similar to neurotransmitter, ‘Architectors’ (An analogy to
neuropeptides) exist to create new Process nodes and other static
influences on the neural grid given specific prerequisites that
apply to all other Neurites. (Frequency and Density of
Transmitter Indexes that provide discrete energy updates to the
internal state of the unit). Both Initial Axioms and Functome
definitions provide details as to what Process nodes are produced
in terms of their activated actions. That is the assumption of the
requirement to a given Neurite configuration before the
environment argues for it’s existence against normal Growth
cone calculations.
In contrast to Deep Learning or other static network definitions.
This provides an element of ‘disposability’ to each Process node.

A requirement of this development exists in ref [13], whereby
higher abstraction in the visual domain correlates less with direct
stimuli, however it’s unknown how this pattern projects to other
existing biological domains or if what the boundary conditions of
dimension returns are.

Execution Phases Per Epoch
Propagate network
Output probes and input links propagate energy updates via
transmitter exchange to each entity (see section ‘The Neuron
model:’ above for more details).
The CEM internally propagates it’s energy updates and set’s
spike data if it occurs. This Spike data (Z index of the spike and
total XY Plane energy) is used to tune the routers, update the
current spike distribution, which is then used to back propagate
the CEM weights for specialisation.
‘TransArchPayloads’ are then exchanged from CEM onto the
neural grid based on the parent process nodes Functome encoded
instructions.
Evaluate and Prune Network
The Stability index is calculated for all process nodes, those that
fall below the
 minimal threshold are removed – emulating neural pruning.
If the CEM of a process node hasn’t been stimulated by any
dendrite terminals, stability index and prune functionality is
disabled for the epoch.

Version 3.0 Last updated: 28/12/2021

Develop Network
The remaining Process nodes are allowed to be modified based
on Evaluate Network results, new process nodes and Neurite
updates are executed. The active Functome functions continue to
propagate within the process nodes.
Mutations are applied randomly to the growth rules/actions if the
stability index is below a set minimum.

Workflow description

Depicted above, a high level diagram of how data is propagated
between variations of the EdeN Server and EdeN Clients.

Given successful entity training. The Functome mutation is
disabled.
A copy of this save state can either be ‘locked’ - whereby only
the propagate phase is activated or used for further development
under potentially different environments or within a
simulation/embedded context with other entities with alternative
specialized.

This system encourages transfer learning as a core principle of
development.

Notes on Entity Fitness Evaluation method

In order to evaluate the progression of entities over many
domains simultaneously, a fitness function from both the explicit
data of a given input function and it’s potential cross domain
outputs have to be supplied.
Naturally, the number of evaluations required approach the
infinite after a very short duration.
There are a few strategies in mind to deal with this issue:

I) Domain response time constraints, whereby a certain minimum
and maximum cardinality of the events of an agent is required for
it’s survival.
II) Self attenuating fitness evaluation, whereby on a certain
milestone of the multi-agent training, a domains performance is
deemed ‘good enough’ for a reduction of the same evaluation to
only be required, this assumes this same training data is so well
encoded into the surviving agents, further explicit enforcement
isn’t required.
These principles will be explored in the next
paper/demonstration.

Training evaluation overview
Alongside the creation of entities and it’s evolving constraints,
the EdeN Framework also provides a training guidance
functionality, labeled as ‘TrainingSessionMetaData’ this is a
runtime log of all entity virtual positions, value goals and virtual
environmental control data which create or destroy elements in
the training environment on acceptance of various preconditions.
This allows for a dynamic environment aimed at promoting the
evolution of highly complex tasks.

Closing comments and next steps
Whilst all mechanisms described above function as expected
within the framework, large scale testing for trained entities
performing complex tasks has yet to be achieved, further
research and development work continues in this area and more
papers are to follow with results.
It is believed the methods selected in this framework will provide
a better interface to general training without requiring specialist
knowledge, leading to the authors desired goal of supportive/
duplicate systems to aide sectors from healthcare to R&D and
manufacturing.

Start EDeNServer

end

Wait for EDeNClient...

Connection request received

Transfer input and output probe setup data

Start Phase execution of entity

Received input link update request

Propagate data through entity, output to local output probes

Send output probe data to data server

Receive output probe update request

Data server uses output prob data to change environment

Connection terminated

Viewer does not support full SVG 1.1

Version 3.0 Last updated: 28/12/2021

REFERENCES AND INFLUENTIAL SOURCES

1 Thermodynamics for a network of neurons : Signatures of criticality.
Gaˇsper Tkaˇcik , Thierry Mora, Olivier Marre , Dario Amodei, Michael J.
Berry II, William Bialek
 https://arxiv.org/pdf/1407.5946.pdf
22-Jul-2014

2 Towards Cytoskeleton Computers. A proposal.
Andrew Adamatzky , Jack Tuszynski , J¨org Pieper, Dan V. Nicolau,
Rossalia Rinalndi , Georgios Sirakoulis, Victor Erokhin, J¨org
Schnauß,David M. Smith
https://arxiv.org/pdf/1810.04981.pdf
11 Oct 2016

3 Glia - Neuron Interactions in Neurological Diseases: Testing Non-cell
Autonomy in a Dish
Kathrin Meyer, Brian K. Kaspar.
(Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,
USA 2Molecular, Cellular & Developmental Biology Graduate Program,
The Ohio State University, Columbus, Ohio, USA 3Department of
Neuroscience, The Ohio State University, Columbus, Ohio, USA)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160
.pdf
11 Feb 2018

4 A Mathematical Theory of Communication
C.E Shannon
http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
Jul/Oct 1948

5 Glial cells in neuronal network function
Alfonso Araque* and Marta Navarrete
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313
.pdf
12 Aug 2010~

6 Neural code – Neural self-information Theory on How Cell-Assembly
Code Rises from Spike Time and Neuronal variability
Meng Li 1 and Joe Z. Tsien
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-
00236.pdf
30, Aug, 2017

7 Pyramidal Neuron as Two-Layer Neural Network
Panayiota Poirazi*, Terrence Brannon and Bartlett W. Mel
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via
%3Dihub March 2003

8 Automatic fitting of spiking neuron models to electrophysiological
recordings
https://www.frontiersin.org/articles/10.3389/neuro.11.002.2010/full
05 March 2010

9 Maximum Entropy Approaches to Living Neural Networks
Fang-Chin Yeh , Aonan Tang,, Jon P. Hobbs,Pawel Hottowy, Wladyslaw
Dabrowski , Alexander Sher, Alan Litke, John M. Beggs
http://www.beggslab.com/uploads/1/0/1/7/101719922/19yehetal2010.pdf
2010

10 Learning with Genetic Algorithms: An Overview
Kenneth De Jong
https://link.springer.com/content/pdf/10.1007%2FBF00113894.pdf
15 Jan 1998

11 List of Deep Learning Layers
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-
layers.html
Revision 2019

12 Single Neurons may encode simultaneous stimuli by switching between
activity patterns

Valeria C. Caruso , Jeff T. Mohl, Christopher Glynn , Jungah Lee ,Shawn
M. Willett , Azeem Zaman, Akinori F. Ebihara , Rolando Estrada, Winrich
A. Freiwald,Surya T. Tokdar, & Jennifer M. Groh1
https://www.nature.com/articles/s41467-018-05121-8.pdf
2018

13 A large-scale, standardized physiological survey reveals higher order
coding throughout the mouse visual cortex
Allen Institute for Brain science, Seattle
https://www.biorxiv.org/content/10.1101/359513v1.full

14 Optimizing gradient descent
http://ruder.io/optimizing-gradient-descent/
19 January 2016

15 On the practical usage of genetic algorithms in ecology and evolution
Steven Hamblin
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-
210X.12000

16 Dynamic routing between Capsules
Geoffry E. Hinton
https://arxiv.org/pdf/1710.09829.pdf

17 Generative Adversarial nets
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair , Aaron Courville, Yoshua Bengio
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

18 The Sodium ‘‘Leak’’ Has Finally Been Plugged
Terrance P. Snutch1, * and Arnaud Monteil2 1Michael Smith Laboratories,
University of British Columbia, Vancouver, BC, Canada V6T 1Z4 2 Institut
de Ge´ nomique Fonctionnelle, CNRS UMR5203 - INSERM U661 -
Universite´ s Montpellier I et II, De´ partement de Physiologie, 34094
Montpellier Cedex 5, France
https://www.cell.com/action/showPdf?pii=S0896-6273%2807%2900339-X

19 The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses
Gina G. Turrigiano
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419
31 Oct 2008

20 Neuropeptides: opportunities for drug discovery
Tomas Hökfelt 1, Tamas Bartfai, Floyd Bloom
https://pubmed.ncbi.nlm.nih.gov/12878434/
Aug 2003

Authors

 Jamie Nicholas Shelley, Optishell Consultancy

https://pubmed.ncbi.nlm.nih.gov/12878434/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419
https://www.cell.com/action/showPdf?pii=S0896-6273(07)00339-X
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1710.09829.pdf
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
http://ruder.io/optimizing-gradient-descent/
https://www.biorxiv.org/content/10.1101/359513v1.full
https://www.nature.com/articles/s41467-018-05121-8.pdf
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://link.springer.com/content/pdf/10.1007%2FBF00113894.pdf
http://www.beggslab.com/uploads/1/0/1/7/101719922/19yehetal2010.pdf
https://www.frontiersin.org/articles/10.3389/neuro.11.002.2010/full
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0896627303001491?via%3Dihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-00236.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582596/pdf/fncel-11-00236.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/pdf/rstb20090313.pdf
http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939136/pdf/nihms765160.pdf
https://arxiv.org/pdf/1810.04981.pdf
https://arxiv.org/pdf/1407.5946.pdf

	Energy Decay Network (EDeN)
	Jamie Nicholas Shelley

	GENETICS AND GENETIC ALGORITHMS
	14 Optimizing gradient descent http://ruder.io/optimizing-gradient-descent/ 19 January 2016
	15 On the practical usage of genetic algorithms in ecology and evolution Steven Hamblin https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12000
	16 Dynamic routing between Capsules Geoffry E. Hinton https://arxiv.org/pdf/1710.09829.pdf
	17 Generative Adversarial nets Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair , Aaron Courville, Yoshua Bengio https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
	18 The Sodium ‘‘Leak’’ Has Finally Been Plugged Terrance P. Snutch1, * and Arnaud Monteil2 1Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 2 Institut de Ge´ nomique Fonctionnelle, CNRS UMR5203 - INSERM U661 - Universite´ s Montpellier I et II, De´ partement de Physiologie, 34094 Montpellier Cedex 5, France https://www.cell.com/action/showPdf?pii=S0896-6273%2807%2900339-X

	19 The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses Gina G. Turrigiano https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834419 31 Oct 2008
	20 Neuropeptides: opportunities for drug discovery Tomas Hökfelt 1, Tamas Bartfai, Floyd Bloom https://pubmed.ncbi.nlm.nih.gov/12878434/ Aug 2003

