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Abstract
This is a tutorial paper for Hidden Markov Model
(HMM). First, we briefly review the background
on Expectation Maximization (EM), Lagrange
multiplier, factor graph, the sum-product algo-
rithm, the max-product algorithm, and belief
propagation by the forward-backward procedure.
Then, we introduce probabilistic graphical mod-
els including Markov random field and Bayesian
network. Markov property and Discrete Time
Markov Chain (DTMC) are also introduced. We,
then, explain likelihood estimation and EM in
HMM in technical details. We explain evalua-
tion in HMM where direct calculation and the
forward-backward belief propagation are both
explained. Afterwards, estimation in HMM is
covered where both the greedy approach and the
Viterbi algorithm are detailed. Then, we explain
how to train HMM using EM and the Baum-
Welch algorithm. We also explain how to use
HMM in some applications such as speech and
action recognition.

1. Introduction
Assume we have a time series of hidden random variables.
We name the hidden random variables as states (Ghahra-
mani, 2001). Every hidden random variable can generate
(emit) an observation symbol or output. Therefore, we have
a set of states and a set of observation symbols. A Hidden
Markov Model (HMM) has some hidden states and some

emitted observation symbols (Rabiner, 1989). HMM mod-
els the the probability density of a sequence of observed
symbols (Roweis, 2003).
This paper is a technical tutorial for evaluation, estima-
tion, and training in HMM. We also explain some applica-
tions for HMM. There exist many different applications for
HMM. One of the most famous applications is in speech
recognition (Rabiner, 1989; Gales et al., 2008) where an
HMM is trained for every word in the speech (Rabiner &
Juang, 1986). Another application of HMM is in action
recognition (Yamato et al., 1992) because an action can
be seen as a sequence or times series of poses (Ghojogh
et al., 2017; Mokari et al., 2018). An interesting applica-
tion of HMM, which is not trivial in the first glance, is in
face recognition (Samaria, 1994). The face can be seen as
a sequence of organs being modeled by HMM (Nefian &
Hayes, 1998). Usage of HMM in DNA analysis is another
application of HMM (Eddy, 2004).
The remainder of paper is as follows. In Section 2, we re-
view some necessary background for the paper. Section
3 introduces probabilistic graphical models. Expectation
maximization in HMM is explained in Section 4. after-
wards, evaluation, estimation, and training in HMM are
explain in Sections 5, 6, and 7, respectively. Some applica-
tions are introduced in more details in Section 8. Finally,
Section 9 concludes the paper.

2. Background
Some background required for better understanding of the
HMM algorithms is mentioned in this Section.

2.1. Expectation Maximization
This section is taken from our previous paper (Ghojogh
et al., 2019). Sometimes, the data are not fully observ-
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able. For example, the data are known to be whether zero
or greater than zero. As an illustration, assume the data are
collected for a particular disease but for convenience of the
patients participated in the survey, the severity of the dis-
ease is not recorded but only the existence or non-existence
of the disease is reported. So, the data are not giving us
complete information as Xi > 0 is not obvious whether is
Xi = 2 or Xi = 1000.
In this case, MLE cannot be directly applied as we do
not have access to complete information and some data
are missing. In this case, Expectation Maximization (EM)
(Moon, 1996) is useful. The main idea of EM can be sum-
marized in this short friendly conversation:
– What shall we do? The data are missing! The log-
likelihood is not known completely so MLE cannot be used.
– Mmm, probably we can replace the missing data with
something...
– Aha! Let us replace it with its mean.
– You are right! We can take the mean of log-likelihood
over the possible values of the missing data. Then every-
thing in the log-likelihood will be known, and then...
– And then we can do MLE!
AssumeD(obs) andD(miss) denote the observed data (Xi’s
= 0 in the above example) and the missing data (Xi’s > 0
in the above example). The EM algorithm includes two
main steps, i.e., E-step and M-step.
Let Θ be the parameter which is the variable for likelihood
estimation. In the E-step, the log-likelihood `(Θ), is taken
expectation with respect to the missing data D(miss) in or-
der to have a mean estimation of it. Let Q(Θ) denote the
expectation of the likelihood with respect to D(miss):

Q(Θ) := ED(miss)|D(obs),Θ[`(Θ)]. (1)

Note that in the above expectation, the D(obs) and Θ are
conditioned on, so they are treated as constants and not ran-
dom variables.
In the M-step, the MLE approach is used where the log-
likelihood is replaced with its expectation, i.e., Q(Θ);
therefore:

Θ̂ = arg max
Θ

Q(Θ). (2)

These two steps are iteratively repeated until convergence
of the estimated parameters Θ̂.

2.2. Lagrange Multiplier
Suppose we have a multi-variate function Q(Θ1, . . . ,ΘK)
(called “objective function”) and we want to maximize (or
minimize) it. However, this optimization is constrained and
its constraint is equality P (Θ1, . . . ,ΘK) = c where c is a
constant. So, the constrained optimization problem is:

maximize
Θ1,...,ΘK

Q(Θ1, . . . ,ΘK),

subject to P (Θ1, . . . ,ΘK) = c.
(3)

Figure 1. (a) An example factor graph, and (b) its representation
as a bipartite graph.

For solving this problem, we can introduce a new variable
η which is called “Lagrange multiplier”. Also, a new func-
tion L(Θ1, . . . ,ΘK , η), called “Lagrangian” is introduced:

L(Θ1, . . . ,ΘK , η) =Q(Θ1, . . . ,ΘK)

− η
(
P (Θ1, . . . ,ΘK)− c

)
.

(4)

Maximizing (or minimizing) this Lagrangian function
gives us the solution to the optimization problem (Boyd &
Vandenberghe, 2004):

∇Θ1,...,ΘK ,ηL
set
= 0, (5)

which gives us:

∇Θ1,...,ΘK
L set

= 0 =⇒ ∇Θ1,...,ΘK
Q = η∇Θ1,...,ΘK

P,

∇ηL
set
= 0 =⇒ P (Θ1, . . . ,ΘK) = c.

2.3. Factor Graph, The Sum-Product and
Max-Product Algorithms, and The
Forward-Backward Procedure

2.3.1. FACTOR GRAPH

A factor graph is a bipartite graph where the two partitions
of graph include functions (or factors) fj ,∀j and the vari-
ables xi,∀i (Kschischang et al., 2001; Loeliger, 2004). Ev-
ery factor is a function of two or more variables. The vari-
ables of a factor are connected by edges to it. Hence, we
have a bipartite graph. Figure 1 shows an example factor
graphs where the factor and variable nodes are represented
by circles and squares, respectively.

2.3.2. THE SUM-PRODUCT ALGORITHM

Assume we have a factor graph with some variable nodes
and factor nodes. For this, one of the nodes is considered as
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the root of tree. The result of algorithm does not depend on
which node to be taken as the root (Bishop, 2006). Usually,
the first variable or the last one are considered as the root.
Then, some messages from the leaf (or leaves) are sent up
on the tree to the root (Bishop, 2006). The messages can be
initialized to any fixed constant values (see Eq. (8)). The
message from the variable node xi to its neighbor factor
node fj is:

mxi→fj =
∏

f∈N (xi)\fj

mf→xi
, (6)

where f ∈ N (xi) \ fj means all the neighbor factor nodes
to the variable xi except fj . Also, mxi→fj and mf→xi

denote the message from the variable xi to the factor fj
and the message from the factor f to the variable xi, re-
spectively. The message from a the factor node fj to its
neighbor variable xi is:

mfj→xi
=

∑
values of x∈N (fj)\xi

fj
∏

x∈N (fj)\xi

mx→fj . (7)

The Eq. (6) includes both sum and product. This is
why this procedure is named the sum-product algorithm
(Kschischang et al., 2001; Bishop, 2006). In the factor
graph, if the variable xi has degree one, the message is:

mxi→fj = [1, 1, . . . , 1]> ∈ Rk, (8)

where k is the number of possible values that the variables
can get. Moreover, if the variable xi has degree two con-
nected to fj and f`, the message is:

mxi→fj = mf`→xi
. (9)

A good example for better understanding of Eqs. (6) and
(7) exists in chapter 8 in (Bishop, 2006).
For the exact convergence (and inference) of belief prop-
agation, the graph should be a tree, i.e., should be cycle-
free (Kschischang et al., 2001). If the factor graph has
cycles, the inference is approximate where the algorithm
is stopped after a while manually. The belief propagation
in such graphs is called loopy belief propagation (Murphy
et al., 1999; Bishop, 2006). Note that Markov chains are
cycle-free so the exact belief propagation can be applied
for them.
It is also noteworthy that as every variable which is con-
nected to only two factor nodes merely passes the message
through (see Eq. (9)), a new graphical model, named nor-
mal graph (Forney, 2001), was proposed which states every
variable as an edge rather than a node (vertex). More details
about factor graph and sum-product algorithm can be found
in references (Kschischang et al., 2001; Loeliger, 2004)
and chapter 8 of (Bishop, 2006). Also note that some al-
ternatives to sum-product algorithm are min-product, max-
product, and min-sum (Bishop, 2006).

1 Initialize the messages to [1, 1, . . . , 1]>

2 for time t from 1 to τ do
3 Forward pass: Do sum-product algorithm
4 Backward pass: Do sum-product algorithm
5 belief = forward message × backward

message
6 if max(belief change) then
7 break the loop

8 Return beliefs

Algorithm 1: The forward-backward algorithm
using the sum-product sub-algorithm

2.3.3. THE MAX-PRODUCT ALGORITHM

The max-product algorithm (Weiss & Freeman, 2001;
Pearl, 2014) is similar to the sum-product algorithm where
the summation operator is replaced by the maximum op-
erator. In this algorithm, the messages from the variable
nodes to the factor nodes and vice versa are:

mxi→fj =
∏

f∈N (xi)\fj

mf→xi
, (10)

mfj→xi
= max

values of x∈N (fj)\xi

fj
∏

x∈N (fj)\xi

mx→fj . (11)

2.3.4. BELIEF PROPAGATION WITH
FORWARD-BACKWARD PROCEDURE

In order to learn the beliefs over the variables and factor
nodes, belief propagation can be applied using a forward-
backward procedure (see chapter 8 in (Bishop, 2006)).
The forward-backward algorithm using the sum-product
sub-algorithm is shown in Algorithm 1. In the forward-
backward procedure, the belief over a random variable xi
is the product of the forward and backward messages.

3. Probabilistic Graphical Models
3.1. Markov and Bayesian Networks
A Probabilistic Graphical Model (PGM) is a grpah-based
representation of a complex distribution in the possibly
high dimensional space (Koller & Friedman, 2009). In
other words, PGM is a combination of graph theory and
probability theory. In a PGM, the random variables are rep-
resented by nodes or vertices. There exist edges between
two variables which have interaction with one another in
terms of probability. Different conditional probabilities can
be represented by a PGM.
There exist two types of PGM which are Markov network
(also called Markov random field) and Bayesian network
(Koller & Friedman, 2009). In the Markov network and
Bayesian network, the edges of graph are undirected and
directed, respectively.
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3.2. The Markov Property
Consider a times series of random variables
X1, X2, . . . , Xn. In general, the joint probability of
these random variables can be written as:

P(X1,X2, . . . , Xn) = P(X1)P(X2 |X1)

P(X3 |X2, X1) . . .P(Xn |Xn−1, . . . , X2, X1),
(12)

according to chain (or multiplication) rule in probabil-
ity. [The first order] Markov property is an assumption
which states that in a time series of random variables
X1, X2, . . . , Xn, every random variable is merely depen-
dent on the latest previous random variable and not the oth-
ers. In other words:

P(Xi |Xi−1, Xi−2, . . . , X2, X1) = P(Xi |Xi−1). (13)

Hence, with Markov property, the chain rule is simplied to:

P(X1, X2, . . . , Xn)

= P(X1)P(X2 |X1)P(X3 |X2) . . .P(Xn |Xn−1).
(14)

The Markov property can be of any order. For example, in
a second order Markov property, a random variable is de-
pendent on the latest and one-to-latest variables. Usually,
the default Markov property is of order one. A stochastic
process which has the Markov process is called a Marko-
vian process (or Markov process).

3.3. Discrete Time Markov Chain
A Markov chain is a PGM which has Markov property. The
Markov chain can be either directed or undirected. Usually,
Markov chain is a Bayesian network where the edges are
directed. It is important not to confuse Markov chain with
Markov network.
There are two types of Markov Chain which are Discrete
Time Markov Chain (DTMC) (Ross, 2014) and Continu-
ous Time Markov Chain (CTMC) (Lawler, 2018). As it is
obvious from their names, in DTMC and CTMC, the time
of transitions from a random variable to another one is and
is not partitioned into discrete slots, respectively.
If the variables in a DTMC are considered as states, the
DTMC can be viewed as a Finite-State Machine (FSM)
or a Finite-State Automaton (FSA) (Booth, 1967). Also,
note that the DTMC can be viewed as a Sub-Shifts of Finite
Type in modeling dynamic systems (Brin & Stuck, 2002).

3.4. Hidden Markov Model (HMM)
HMM is a DTMC which contains a sequence of hidden
variables (named states) in addition to a sequence of emit-
ted observation symbols (outputs).
We have an observation sequence of length τ which is the
number clock times, t ∈ {1, . . . , τ}. Let n and m denote

the number of states and observation symbols, respectively.
We show the sets of states and possible observation sym-
bols by S = {s1, . . . , sn} and O = {o1, . . . , om}, re-
spectively. We show being in state si and in observation
symbol oi at time t by si(t) and oi(t), respectively. Let
Rn×n 3 A = [ai,j ] be the state Transition Probability Ma-
trix (TPM), where:

ai,j := P
(
sj(t+ 1) | si(t)

)
. (15)

We have:
n∑
j=1

ai,j = 1. (16)

The Emission Probability Matrix (EPM) is denoted by as
Rn×m 3 B = [bi,j ] where:

bi,j := P
(
oj(t) | si(t)

)
, (17)

which is the probability of emission of the observation
symbols from the states. We have:

n∑
j=1

bi,j = 1. (18)

Let the initial state distribution be denoted by the vector
Rn 3 π = [π1, . . . , πn] where:

πi := P
(
si(1)

)
, (19)

and:
n∑
i=1

πi = 1, (20)

to satisfy the probability properties. An HMM model is
denoted by the tuple λ = (π,A,B).
Assume that a sequence of states is generated by the HMM
according to the TPM. We denote this generated sequence
of states by Sg := sg(1), . . . , sg(τ) where sg(t) ∈ S,∀t.
Likewise, a sequence of outputs (observations) is generated
by the HMM according to SPM. We denote this generated
sequence of output symbols by Og := og(1), . . . , og(τ)
where og(t) ∈ O,∀t.
We denote the probability of transition from state sg(t) to
sg(t+ 1) by asg(t),sg(t+1). So:

asg(t),og(t+1) := P(sg(t+ 1) | sg(t)). (21)

Note that sg(t) ∈ S and sg(t+ 1) ∈ S. We also denote:

πsg(i) := P(sg(i)). (22)

Likewise, we denote the probability of state sg(t) emitting
the observation og(t) by bsg(t),og(t). So:

bsg(t),og(t) := P(og(t) | sg(t)). (23)

Note that sg(t) ∈ S and og(t) ∈ O. Figure 2 depicts the
structure of an HMM model.
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Figure 2. A Hidden Markov Model

4. Likelihood and Expectation Maximization
in HMM

The EM algorithm can be used for analysis and training
in HMM (Moon, 1996). In the following, we explain the
details of EM for HMM.

4.1. Likelihood
According to Fig. 2, the likelihood of occurrence of the
state sequence Sg and the observation sequence Og is
(Ghahramani, 2001):

L = P(Sg,Og)
= P

(
sg(1)

)
P(next states | previous states)P(Og | Sg)

= P
(
sg(1)

) τ−1∏
t=1

P(sg(t+ 1) | sg(t))
τ∏
t=1

P(og(t) | sg(t))

= πsg(1)

τ−1∏
t=1

asg(t),sg(t+1)

τ∏
t=1

bsg(t),og(t). (24)

The log-likelihood is:

` = log(L) = log πsg(1) +
τ−1∑
t=1

log(asg(t),sg(t+1))

+

τ∑
t=1

log(bsg(t),og(t)). (25)

Let 1i be a vector with entry one at index i, i.e., 1i :=
[0, 0, . . . , 0, 1, 0 . . . , 0]>. Also, 1sg(1) means the vector
with entry one at the index of the first state in the sequence
Sg . For example if there are three possible states and a se-
quence of length three, sg(1) = 2, sg(2) = 1, sg(3) = 3,
we have 1sg(1) = [0, 1, 0]>.
The terms in this log-likelihood are:

log πsg(1) = 1>sg(1) logπ, (26)

asg(t−1),sg(t) =

n∏
i=1

n∏
j=1

(ai,j)
1i[i] 1j [j],

=⇒ log(asg(t−1),sg(t)) =

n∑
i=1

n∑
j=1

1i[i]1j [j] log(ai,j)

= 1>sg(t−1)(logA)1sg(t), (27)

bsg(t),og(t) =

n∏
i=1

n∏
j=1

(bi,j)
1i[i] 1j [j],

=⇒ log(bsg(t),og(t)) =

n∑
i=1

n∑
j=1

1i[i]1j [j] log(bi,j)

= 1>sg(t)(logB)1og(t), (28)

where 1i[i] = 1j [j] = 1. Hence, we can write the log-
likelihood as:

` =1>sg(1) logπ +

τ−1∑
t=1

1>sg(t−1)(logA)1sg(t)

+

τ∑
t=1

1>sg(t)(logB)1og(t). (29)

4.2. E-step in EM
The missing variables in the log-likelihood are 1sg(1),
1sg(t−1), 1sg(t), and 1og(t). The expectation of the log-
likelihood with respect to the missing variables is:

Q(π,A,B) = E(`)

= E(1>sg(1) logπ) +

τ−1∑
t=1

E
(
1>sg(t)(logA)1sg(t+1)

)
+

τ∑
t=1

E
(
1>sg(t)(logB)1og(t)

)
. (30)

4.3. M-step in EM
We maximize the Q(π,A,B) with respect to the parame-
ters πi, ai,j , and bi,j :

maximize
x

Q(π,A,B)

subject to
n∑
i=1

πi = 1,

n∑
j=1

ai,j = 1, ∀i ∈ {1, . . . , n},

n∑
j=1

bi,j = 1, ∀i ∈ {1, . . . , n},

(31)

where the constraints ensure that the probabilities in the
initial states, the transition matrix, and the emission matrix
add to one.
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The Lagrangian (Boyd & Vandenberghe, 2004) for this op-
timization problem is:

L =E(1>sg(1) logπ) +

τ−1∑
t=1

E
(
1>sg(t)(logA)1sg(t+1)

)
+

τ∑
t=1

E
(
1>sg(t)(logB)1og(t)

)
− η1(

n∑
i=1

πi − 1)

− η2(

n∑
j=1

ai,j − 1)− η3(

n∑
j=1

bi,j − 1), (32)

where η1, η2, and η3 are the Lagrange multipliers.
The first term in the Lagrangian is simplified to
E(1sg(1)[1] log π1 + · · · + 1sg(1)[τ ] log πτ ) =
E(1sg(1)[1] log π1) + · · · + E(1sg(1)[τ ] log πτ ); therefore,
we have:

∂L
∂πi

= E(1sg(1)[i])− η1πi
set
= 0

=⇒ πi =
1

η1
E(1sg(1)[i]). (33)

n∑
i=1

πi = 1
(33)
=⇒ 1

η1

(
E(1sg(1)[1])+

+ · · ·+ E(1sg(1)[i]) + · · ·+ E(1sg(1)[n])
)

=
1

η1
(0 + · · ·+ 1 + · · ·+ 0)

set
= 1 =⇒ η1 = 1. (34)

∴ πi = E(1sg(1)[i]). (35)

Similarly, we have:

∂L
∂ai,j

=

τ−1∑
t=1

E(1sg(t)[i]1sg(t+1)[j])− η2 ai,j
set
= 0

=⇒ ai,j =
1

η2

τ−1∑
t=1

E(1sg(t)[i]1sg(t+1)[j]). (36)

n∑
j=1

ai,j = 1
(36)
=⇒ 1

η2

n∑
j=1

τ−1∑
t=1

E(1sg(t)[i]1sg(t+1)[j]) =

=
1

η2

τ−1∑
t=1

(
E(1sg(t)[i]× 0) + . . .

+ E(1sg(t)[i]× 1)︸ ︷︷ ︸
j-th element

+ · · ·+ E(1sg(t)[i]× 0)
)

=
1

η2

τ−1∑
t=1

E(1sg(t)[i])
set
= 1 =⇒ η2 =

τ−1∑
t=1

E(1sg(t)[i]).

(37)

∴ ai,j =

∑τ−1
t=1 E(1sg(t)[i]1sg(t+1)[j])∑τ−1

t=1 E(1sg(t)[i])
. (38)

Likewise, we have:

∂L
∂bi,j

=

τ∑
t=1

E(1sg(t)[i]1og(t)[j])− η3 bi,j
set
= 0

=⇒ bi,j =
1

η3

τ∑
t=1

E(1sg(t)[i]1og(t)[j]). (39)

n∑
j=1

bi,j = 1
(39)
=⇒ 1

η3

n∑
j=1

τ∑
t=1

E(1sg(t)[i]1og(t)[j]) =

=
1

η3

τ∑
t=1

(
E(1sg(t)[i]× 0) + · · ·+ E(1sg(t)[i]× 1)︸ ︷︷ ︸

j-th element

+ · · ·+ E(1sg(t)[i]× 0)
)

=
1

η3

τ∑
t=1

E(1sg(t)[i])
set
= 1

=⇒ η3 =

τ∑
t=1

E(1sg(t)[i]). (40)

∴ bi,j =

∑τ
t=1 E(1sg(t)[i]1og(t)[j])∑τ

t=1 E(1sg(t)[i])
. (41)

In Section 7.1, we will simplify the statements for πi, ai,j ,
and bi,j .

5. Evaluation in HMM
Evaluation in HMM means the following (Rabiner &
Juang, 1986; Rabiner, 1989): Given the observation se-
quence Og = og(1), . . . , og(τ) and the HMM model λ =
(π,A,B), we want to compute P(Og |λ), i.e., the proba-
bility of the generated observation sequence. In summary:

Og, given: λ =⇒ P(Og |λ) = ? (42)

Note that P(Og |λ) can also be denoted by P(Og; λ). The
P(Og |λ) is sometimes referred to as the likelihood.

5.1. Direct Calculation
Assume that the state sequence Sg = sg(1), . . . , sg(τ) has
caused the observation sequence Og = og(1), . . . , og(τ).
Hence, we have:

P(Og | Sg, λ) = bsg(1),og(1) bsg(2),og(2) . . . bsg(τ),og(τ).
(43)

On the other hand, the probability of the state sequence
Sg = sg(1), . . . , sg(τ) is:

P(Sg |λ) = πsg(1) asg(2),og(2) . . . asg(τ),og(τ). (44)

According to chain rule, we have:

P(Og,Sg |λ) = P(Og | Sg, λ)P(Sg |λ) = (45)
πsg(1) bsg(1),og(1) asg(2),og(2) . . . bsg(τ),og(τ) asg(τ),og(τ),

(46)
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which is the probability of occurrence of both the observa-
tion sequence Og and state sequence Sg .
Any state sequence may have caused the observation se-
quence Og . Therefore, according to the law of total proba-
bility, we have:

P(Og|λ) =
∑
∀Sg

P(Og,Sg |λ)

(45)
=
∑
∀Sg

P(Og | Sg, λ)P(Sg |λ)

(46)
=

∑
∀sg(1)

∑
∀sg(2)

· · ·
∑
∀sg(τ)

πsg(1) bsg(1),og(1) asg(2),og(2)

. . . bsg(τ),og(τ) asg(τ),og(τ), (47)

which means that we start with the first state, then output
the first observation, and then go to the next state. This
procedure is repeated until the last state. The summations
are over all possible states in the state sequence.
The time complexity of this direct calculation of P(Og|λ)
is in the order of O(2τnτ ) because at every time clock
t ∈ {1, . . . , τ}, there are n possible states to go through
(Rabiner & Juang, 1986). Because of nτ , this is very inef-
ficient especially for long sequences (large τ ).

5.2. The Forward-Backward Procedure
A more efficient algorithm for evaluation in HMM is
forward-backward procedure (Rabiner & Juang, 1986).
The forward-backward procedure includes two stages, i.e.,
forward and backward belief propagation stages.

5.2.1. THE FORWARD BELIEF PROPAGATION

Similar to the belief propagation procedure, we define the
forward message until time t as:

αi(t) := P
(
og(1), og(2), . . . , og(t), sg(t) = si |λ

)
, (48)

which is the probability of partial observation sequence un-
til time t and being in state si at time t.
Algorithm 2 shows the forward belief propagation from
state one to the state τ . In this algorithm, αi(t) is solved
inductively. The initial forward message is:

αi(1) = πi bi,og(1), ∀i ∈ {1, . . . , n}, (49)

which is the probability of occurrence of the initial state
si and the observation symbol og(1). The next forward
messages are calculated as:

αj(t+ 1) =
[ n∑
i=1

αi(t) ai,j

]
bj,og(t+1), (50)

which is the probability of occurrence of observation se-
quence og(1), . . . , og(t), being in state si at time t, going
to state j at time t+1, and the observation symbol og(t+1).
The summation is because, at time t, the state sg(t) can be
any state so we should use the law of total probability.

1 Input: λ = (π,A,B)
2 αi(1) = πi bi,og(1), ∀i ∈ {1, . . . , n}
3 for state j from 1 to n do
4 for time t from 1 to (τ − 1) do
5 αj(t+ 1) =

[∑n
i=1 αi(t) ai,j

]
bj,og(t+1)

6 P(Og |λ) =
∑n
i=1 αi(τ)

7 Return P(Og |λ),∀i,∀t : αi(t)

Algorithm 2: The forward belief propagation in
the forward-backward procedure

Proposition 1. The Eq. (50) can be interpreted as the sum-
product algorithm (see Section 2.3.2).

Proof. The Algorithm 2 has iterations over states indexed
by j. Also the Eq. (50) has sum over states index by i.
Consider all states indexed by i and a specific state sj (see
Fig. 3). We can consider every two successive states as a
factor node in the factor graph. Hence, a state indexed by
i and the state sj form a factor node which we denote by
f i,j . The observation symbol og(t + 1) emitted from sj is
considered as the variable node in the factor graph.
The message αi(t) is the message received to the factor
node f i,j so far. Therefore, in the sum-product algorithm
(see Eq. (6)), we have:

mog(t)→fi,j = αi(t). (51)

The message ai,j bj,og(t+1) is the message received from
the factor nodes f i,j ,∀i to the variable node og(t + 1).
Therefore, in the sum-product algorithm (see Eq. (7)), we
have:

mfi,j→og(t+1) = ai,j bj,og(t+1). (52)

Hence:

mf→og(t+1) =

n∑
i=1

mfi,j→og(t+1)mog(t)→fi,j
next

(53)

=

n∑
i=1

ai,j bj,og(t+1)αi(t)

=
[ n∑
i=1

αi(t) ai,j

]
bj,og(t+1). (54)

where f is the set of all factor nodes, {f i,j}ni=1, and f i,jnext
is the factor f i,j in the next time slot.
Note that if we consider Fig. 3 for all states indexed by j,
a lattice network is formed.
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Figure 3. Modeling forward belief propagation for HMM as a
sum-product algorithm in a factor graph.

Finally, using the law of total probability, we have:

P(Og |λ) =

n∑
i=1

P
(
Og, sg(τ) = si |λ

)
=

n∑
i=1

αi(τ),

(55)

which is the desired probability in the evaluation for HMM.
Hence, the forward belief propagation suffices for evalua-
tion. In the following, we explain the backward belief prop-
agation which is required for other sections of the paper.

5.2.2. THE BACKWARD BELIEF PROPAGATION

Again similar to the belief propagation procedure, we de-
fine the backward message since time τ to t+ 1 as:

βi(t) := P
(
og(t+1), og(t+2), . . . , og(τ) | sg(t) = si, λ

)
,

(56)
which is the probability of partial observation sequence
from t + 1 until the end time τ given being in state si at
time t.
Algorithm 3 shows the backward belief propagation. In this
algorithm, the initial backward message is:

βi(τ) = 1, ∀i ∈ {1, . . . , n}. (57)

The next backward messages are calculated as:

βi(t) =

n∑
j=1

ai,j bj,og(t+1), (58)

which is the probability of being in state si at time t, go-
ing to state j at time t + 1, and the observation symbol
og(t + 1). The summation is because, at time t + 1, the

1 Input: λ = (π,A,B)
2 βi(τ) = 1, ∀i ∈ {1, . . . , n}
3 for state i from 1 to n do
4 for time t from (τ − 1) to 1 do
5 βi(t) =

∑n
j=1 ai,j bj,og(t+1)

6 Return ∀i,∀t : βi(t)

Algorithm 3: The backward belief propagation
in the forward-backward procedure

state sg(t+ 1) can be any state so we should use the law of
total probability.
It is noteworthy that for very long sequences, the αi(t) and
β(t) become extremely small, recursively (see Algorithms
2 and 3). Hence, some people normalize them at every
iteration of algorithm (Ghahramani, 2001):

αi(t)←
αi(t)∑τ
j=1 αj(t)

, (59)

βi(t)←
βi(t)∑τ
j=1 βj(t)

, (60)

in order to sum to one. However, note that if this normal-
ization is done, we will have P(Og |λ) = 1.

5.2.3. TIME COMPLEXITY

The time complexity of the forward belief propagation is in
the order of O(τn2) because we have O(nτ) loops each of
which includes summation over n states (Rabiner & Juang,
1986). This is much more efficient than the complexity of
direct calculation of P(Og|λ) which was O(2τnτ ). Simi-
larly, the time complexity of the backward belief propaga-
tion is in the order of O(τn2) (Rabiner & Juang, 1986).

6. Estimation in HMM
Estimation in HMM means the following (Rabiner &
Juang, 1986; Rabiner, 1989): Given the observation se-
quence Og = og1, . . . , o

g
τ and the HMM model λ =

(π,A,B), we want to compute or estimate P(Sg | Og, λ),
i.e., the probability of a state sequence given an observation
sequence. In summary:

Sg, given: Og, λ =⇒ P(Sg | Og, λ) = ? (61)

6.1. Greedy Approach
Let the probability of being in state si at time t given the
observation sequence Og and the HMM model λ be de-
noted by:

γi(t) := P
(
sg(t) = si | Og, λ

)
. (62)
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We can say:

γi(t)P(Og |λ) = P
(
sg(t) = si | Og, λ

)
P(Og |λ)

(a)
= P

(
sg(t) = si,Og, λ

) (b)
= αi(t)βi(t)

=⇒ γi(t) =
αi(t)βi(t)

P(Og |λ)
(63)

=
αi(t)βi(t)∑n
j=1 αj(t)βj(t)

, (64)

where (a) is because of chain rule in probability and (b) is
because:

αi(t)βi(t)
(48),(56)

=

= P
(
og(1), og(2), . . . , og(t), sg(t) = si |λ

)
× P

(
og(t+ 1), og(t+ 2), . . . , og(τ) | sg(t) = si, λ

)
= P

(
og(1), og(2), . . . , og(τ), sg(t) = si, λ

)
= P

(
Og, sg(t) = si, λ

)
.

The reason of (b) can also be interpreted in this way: it is
because of the forward-backward procedure which states
the belief over a variable as product of the forward and
backward messages (see Section 2.3.4). Note that we have∑n
i=1 γi(t) = 1. Also, note that P(Og |λ) in Eq. (63) can

be obtained from either the denominator of Eq. (64) or line
6 in Algorithm 2 (i.e., Eq. (55)).
In the greedy approach, at every time t, we select a state
with maximum probability of occurrence without consid-
ering the other states in the sequence. Therefore, we have:

sg(t) = arg max
1≤i≤n

γi(t), ∀t ∈ {1, . . . , τ}, (65)

6.2. The Viterbi Algorithm
The greedy approach does not optimize over the whole path
but greedily chooses the best state at every time step. An-
other approach is to find the best state sequence which
has the highest probability of occurrence, i.e., maximiz-
ing P(Og,Sg |λ) (Rabiner & Juang, 1986). The Viterbi
algorithm (Viterbi, 1967; Forney, 1973) can be used to find
this path of states (Blunsom, 2004). Different works, such
as (He, 1988), have worked on using Viterbi algorithm for
HMM.
Algorithm 4 shows the Viterbi algorithm for estimation in
HMM (Rabiner & Juang, 1986). In this algorithm, we have
variable δj(t):

δj(t) = max
1≤i≤n

[
δi(t− 1) ai,j

]
bj,og(t), (66)

which is similar to αj(t) defined in Eq. (50), except that
αj(t) in the forward belief propagation uses sum-product
algorithm (Kschischang et al., 2001) while δj(t) in the
Viterbi algorithm uses max-product algorithm (Weiss &
Freeman, 2001; Pearl, 2014) (see Sections 2.3.2 and 2.3.3).

1 Input: λ = (π,A,B)
2 // Initialization:
3 δi(1) = πi bi,og(1), ∀i ∈ {1, . . . , n}
4 ψi(1) = 0, ∀i ∈ {1, . . . , n}
5 // Recursion:
6 for state j from 1 to n do
7 for time t from 2 to τ do
8 δj(t) = max1≤i≤n

(
δi(t−1) ai,j

)
bj,og(t)

9 ψj(t) = arg max1≤i≤n
(
δi(t− 1) ai,j

)
10 // Termination:
11 p∗ = max1≤i≤n δi(τ)
12 s∗(τ) = arg max1≤i≤n δi(τ)
13 // Backtracking:
14 for time t from τ − 1 to 1 do
15 s∗(t) = ψs∗(t+1)(t+ 1)

16 P(Og,Sg |λ) = p∗

17 Return P(Og,Sg |λ),Sg = s∗(1), . . . , s∗(τ)

Algorithm 4: The Viterbi algorithm for estima-
tion in HMM

Proposition 2. The Eq. (66) can be interpreted as the max-
product algorithm (see Section 2.3.3).

Proof. The Algorithm 4 has iterations over states indexed
by j. Also the Eq. (66) has maximum operator over states
index by i. Consider all states indexed by i and a specific
state sj (see Fig. 4). The definitions of factor node and
variable node in the factor graph are similar to the proof of
Proposition 1.
The message δi(t− 1) is the message received to the factor
node f i,j so far. Therefore, in the max-product algorithm
(see Eq. (10)), we have:

mog(t−1)→fi,j = δi(t− 1). (67)

The message ai,j bj,og(t) is the message received from the
factor nodes f i,j ,∀i to the variable node og(t). Therefore,
in the max-product algorithm (see Eq. (11)), we have:

mfi,j→og(t) = ai,j bj,og(t). (68)

Hence:

mf→og(t) = max
1≤i≤n

mfi,j→og(t)mog(t)→fi,j
next

(69)

= max
1≤i≤n

ai,j bj,og(t)δi(t− 1)

=
[

max
1≤i≤n

δi(t− 1) ai,j

]
bj,og(t). (70)

where f is the set of all factor nodes, {f i,j}ni=1, and f i,jnext
is the factor f i,j in the next time slot.
Note that if we consider Fig. 4 for all states indexed by
j, a lattice network is formed which is common in Viterbi
algorithm (see (Rabiner & Juang, 1986)).



Hidden Markov Model: Tutorial 10

Figure 4. Modeling Viterbi algorithm for HMM as a max-product
algorithm in a factor graph. This figure is very similar to Fig. 3
where the difference is in the index of time.

Similar to Eq. (49), the initial δj(t) is:

δi(1) = πi bi,og(1), ∀i ∈ {1, . . . , n}. (71)

We define the index maximizing in Eq. (66) as:

ψj(t) = arg max
1≤i≤n

(
δi(t− 1) ai,j

)
. (72)

Then, a backward analysis is done starting from the end of
state sequence:

p∗ = max
1≤i≤n

δi(τ), (73)

s∗(τ) = arg max
1≤i≤n

δi(τ), (74)

and the other states in the sequence are backtracked as:

s∗(t) = ψs∗(t+1)(t+ 1). (75)

The states Sg = s∗(1), s∗(2), . . . , s∗(τ) are the desired
state sequence in the estimation. Therefore, the states in
the state sequence are maximizing the forward belief prop-
agation in a max-product setting.
The probability of this path of states with maximum prob-
ability of occurrence is:

P(Og,Sg |λ) = p∗. (76)

Note that the Viterbi algorithm can be visualized using a
trellis structure (see Appendix A in (Jurafsky & Martin,
2019)).

7. Training the HMM
Training HMM means the following (Rabiner & Juang,
1986; Rabiner, 1989): Given the observation sequence
Og = og1, . . . , o

g
τ , we want to adjust the HMM model pa-

rameters λ = (π,A,B) in order to maximize P(Og |λ).
In summary:

given: Og,O,S =⇒ λ = arg max
λ

P(Og |λ). (77)

7.1. The Baum-Welch Algorithm
We can solve for Eq. (77) using maximum likelihood esti-
mation using Expectation Maximization (EM). The Baum-
Welch algorithm (Baum et al., 1970) is the most well-
known method for training HMM. It makes use of the EM
results.
We define the probability of occurrence of a path being in
states si and sj , respectively, at times t and t+ 1 by:

ξi,j(t) := P
(
sg(t) = si, s

g(t+ 1) = sj | Og, λ
)
. (78)

We can say:

ξi,j(t)P(Og |λ)

= P
(
sg(t) = si, s

g(t+ 1) = sj | Og, λ
)
P(Og |λ)

(a)
= P

(
sg(t) = si, s

g(t+ 1) = sj ,Og, λ
)

(b)
= αi(t) ai,j bj,og(t+1) βj(t+ 1)

=⇒ ξi,j(t) =
αi(t) ai,j bj,og(t+1) βj(t+ 1)

P(Og |λ)
(79)

=
αi(t) ai,j bj,og(t+1) βj(t+ 1)∑n

r=1

∑n
`=1 αr(t) ar,` b`,og(t+1) β`(t+ 1)

, (80)

where (a) is because of chain rule in probability and (b)
is because of the following: According to Eqs. (48), (15),
(17), and (56), we have:

αi(t) = P(og(1), . . . , og(t), sg(t) = si |λ),

ai,j = P(sj(t+ 1) | si(t)),
bj,og(t+1) = P(og(t+ 1) | sj(t+ 1)),

βj(t+ 1) = P(og(t+ 2), . . . , og(τ) | sg(t+ 1) = sj , λ).

Therefore, we have:

αi(t) ai,j(t) bj,og(t+1) βj(t+ 1)

= P
(
sg(t) = si, s

g(t+ 1) = sj ,Og, λ
)
.

Note that we have
∑n
i=1

∑n
j=1 ξi,j(t) = 1. Also, note

that P(Og |λ) in Eq. (79) can be obtained from either the
denominator of Eq. (80) or line 6 in Algorithm 2 (i.e., Eq.
(55)).
In Eq. (79), the terms αi(t), ai,j(t), bj,og(t+1), and βj(t +
1) stand for the probability of the first t observations ending
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in state si at time t, the probability of transitioning from
state si (at time t) to state sj (at time t+ 1), the probability
of observing og(t + 1) from state sj at time t + 1, and the
probability of the remainder of the observation sequence,
respectively.
Now, recall the Eqs. (35), (38), and (41) from EM algo-
rithm for HMM. We write these equations again for conve-
nience of the reader:

πi = E(1sg(1)[i]),

ai,j =

∑τ−1
t=1 E(1sg(t)[i]1sg(t+1)[j])∑τ−1

t=1 E(1sg(t)[i])
,

bi,j =

∑τ
t=1 E(1sg(t)[i]1og(t)[j])∑τ

t=1 E(1sg(t)[i])
.

On the other hand, recall Eqs. (62) and (78) which are
repeated here:

γi(t) = P
(
sg(t) = si | Og, λ

)
,

ξi,j(t) = P
(
sg(t) = si, s

g(t+ 1) = sj | Og, λ
)
.

Therefore, we can say:

E(1sg(1)[i]) = γi(1), (81)
E(1sg(t)[i]) = γi(t), (82)
E(1sg(t)[i]1sg(t+1)[j]) = ξi,j(t), (83)
E(1sg(t)[i]1og(t)[j]) = γi(t), where og(t) = j in γi(t).

(84)

Hence:

πi = γi(1)
(62)
= P

(
sg(1) = si | Og, λ

)
, ∀i ∈ {1, . . . , n},

(85)

ai,j =

∑τ−1
t=1 ξi,j(t)∑τ−1
t=1 γi(t)

, ∀i, j ∈ {1, . . . , n}, (86)

bi,j =

∑τ
t=1, og(t)=j γi(t)∑τ

t=1 γi(t)
, ∀i ∈ {1, . . . , n},

∀j ∈ {1, . . . ,m}.

With change of variable, we have:

bj,k =

∑τ
t=1, og(t)=k γj(t)∑τ

t=1 γj(t)
, ∀j ∈ {1, . . . , n}, (87)

∀k ∈ {1, . . . ,m}.

The algorithm is shown in Algorithm 5 (Rabiner & Juang,
1986). In this algorithm the initial probabilities of being in
state si at time t = 1 is according to Eq. (85). Then the ai,j
is then calculated using Eq. (86). According to counting
in probability, it can also be interpreted as the ratio of the

1 Input: γi(t), ξi,j(t),∀i,∀j,∀t
2 πi = γi(1), ∀i ∈ {1, . . . , n}
3 for state i from 1 to n do
4 for state j from 1 to n do
5 ai,j =

∑τ−1
t=1 ξi,j(t)/

∑τ−1
t=1 γi(t)

6 for state j from 1 to n do
7 for observation k from 1 to m do
8 bj,k =

∑τ
t=1, og(t)=k γj(t)/

∑τ
t=1 γj(t)

9 // Normalization, for computer error corrections:
10 πi ← πi/

∑n
j=1 πj

11 ai,j ← ai,j/
∑n
`=1 ai,`

12 bj,k ← bj,k/
∑m
`=1 bj,`

13 π = [π1, . . . , πn]>,A = [ai,j ],B =
[bj,k], ∀i, j ∈ {1, . . . , n},∀k ∈ {1, . . . ,m}

14 Return λ = (π,A,B)

Algorithm 5: The Baum-Welch algorithm for
training the HMM

expected number of transitions from state si to sj over the
expected number of transitions out of state si. Finally, the
bj,k is calculated using Eq. (87). Likewise, using counting
in probability, the bj,k can be interpreted as the ratio of
the expected number of times being in state sj and seeing
observation ok over the expected number of times being in
state sj .
Note that in the numerator of Eq. (87), we have og(t) =
k in γj(t), i.e., according to Eq. (62), we have γj(t) =
P
(
sg(t) = sj | og(1), . . . , og(t) = k, . . . , og(τ), λ

)
. This

means that according to Eq. (63), we set og(t) = k in Eqs.
(50) and (58), or in Algorithms 2 and 3, for calculation of
γj(t) in Eq. (87). On the other hand, in line 8 in Algorithm
5, we are iterating over all the time slots t ∈ {1, . . . , τ}.
Hence, in the numerator of Eq. (87), we will have γj(t) =
P
(
sg(t) = sj | og(1) = k, . . . , og(t) = k, . . . , og(τ) =

k, λ
)
. Therefore:

• For calculating the numerator of Eq. (87), we use Eq.
(64) where:

αj(t+ 1) =
[ n∑
i=1

αi(t) ai,j

]
bj,k, (88)

βi(t) =

n∑
j=1

ai,j bj,k, (89)

in line 5 in Algorithm 2 and in line 5 in Algorithm
3, respectively. We use the obtained αi,∀i,∀t and
βi(t),∀i,∀t for calculating the numerator of Eq. (64).

• For calculating the denominator of Eq. (87), we use
Eq. (64) where Algorithms 2 and 3 are used for calcu-
lating αi(t) and βi(t).
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It is noteworthy that because of a possible error caused
by computer, it is better to normalize the obtained HMM
model parameters (see lines 10 to 12 in Algorithm 5) in or-
der to make sure that Eqs. (20), (16), and (18) are satisfied.

7.2. Training the HMM
We know that Algorithm 5 requires γi(t) and ξi,j(t). Ac-
cording to Eqs. (63) and (79), the γi(t) and ξi,j(t) also re-
quire αi(t) and βi(t). The αi(t) and βi(t) can be computed
using Algorithms (2) and (3), respectively. Moreover, note
that in calculatingαi(t), β(i), and ξi,j(t), we need some πi,
ai,j , and bi,j from π, A, and B, respectively. Therefore,
we need an initial λ = (π,A,B) to compute another λ′ =
(π′,A′,B′) at the end according to Algorithm 5. Thus, we
should fine tune λ = (π,A,B) iteratively. The obtained
λ′ from the previous λ satisfies P(Og |λ′) ≥ P(Og |λ)
(Rabiner & Juang, 1986) (see (Baum & Eagon, 1967) or
(Baum et al., 1970) for proof) so we have progress in con-
vergence (note that P(Og |λ) is obtained for each iteration
in line 6 in Algorithm 6). If we have several training se-
quencesQ, indexed by q ∈ {1, . . . , |Q|}, we use one of the
sequences at the first iteration, the second sequence at the
second iteration, and so on. We repeat this procedure until
convergence which is reached when there is no significant
change in λ. Algorithm 6 shows how to train an HMM.

8. Usage of HMM in Applications
In Section 1, we introduced some application of HMM
in speech recognition (Rabiner & Juang, 1986; Rabiner,
1989; Gales et al., 2008), action recognition (Yamato et al.,
1992; Ghojogh et al., 2017), and face recognition (Nefian
& Hayes, 1998; Samaria, 1994). Here, we explain the ap-
plications in speech and action recognition in more details.

8.1. Application in Speech Recognition
Assume we have a dictionary of words consisting of |W|
words. For every word indexed by w ∈ {1, . . . , |W|}, we
have |Qw| training instances spoken by one or several peo-
ple. The training instances for a word are indexed by q
where q ∈ {1, . . . , |Qw|}. Every training instance is a
sequence of observation symbols obtained from formants
(Titze & Martin, 1998). We consider an HMM model for
every word in the dictionary. Training the HMMs are as
(Rabiner & Juang, 1986; Rabiner, 1989):

1. For every word wi, consider the training sequences,
Ogw, indexed by q, i.e., og1, . . . , o

g
|Qw|.

2. Train the HMM for the w-th word using Algorithm 6
to obtain λw.

For an unknown test word with sequence Ogt =
og1, . . . , o

g
|Qt|, we recognize the word as (Rabiner & Juang,

1986; Rabiner, 1989):

1 Input: {Og = og1, . . . , o
g
τ}
|Q|
q=1

2 Initialize λ = (π,A,B) where
∑n
i=1 πi = 1,∑n

j=1 ai,j = 1,
∑n
j=1 bi,j = 1

3 while Convergence do
4 for each q from 1 to |Q| do
5 Consider the q-th training sequence
6 P(Og |λ),∀i,∀t : αi(t)← Do

Algorithm 2 [input: λ]
7 ∀i,∀t : βi(t)← Do Algorithm 3 [input:

λ]
8 ∀i,∀t : γi(t)← Eq. (63) [input: α, β]
9 ∀i,∀j,∀t : ξi,j(t)← Eq. (79) [input: α,

β, λ]
10 λ← Do Algorithm 5 [input: γ, ξ]
11 if change of λ is small then
12 Convergence← True

13 Return λ = (π,A,B)

Algorithm 6: Training the HMM

1. Calculate P(Ogt |λw) for all w ∈ {1, . . . , |W|} using
the forward belief propagation, i.e., Algorithm 2 (see
Eq. (55)).

2. The test word is recognized as:

w∗ = arg max
w

P(Ogt |λw). (90)

So, the test word is recognized as the w-th word in the
dictionary.

In test phase for speech recognition, usually, the Viterbi al-
gorithm is used (Rabiner, 1989). Hence, another approach
for recognition of the test word Ogt is:

1. Calculate P(Ogt ,S
g
t |λw) for all w ∈ {1, . . . , |W|}

using the Viterbi algorithm, i.e., Algorithm 4 (see Eq.
(76)).

2. The test word is recognized as:

w∗ = arg max
w

P(Ogt ,S
g
t |λw). (91)

So, the test word is recognized as the w-th word in the
dictionary.

Note that the words are pronounced with different lengths
(fast or slowly) by different people. As HMM is robust to
different repetitions of states, the recognition of words with
different pacing is possible.

8.2. Application in Action Recognition
In action recognition, every action can be seen as a se-
quence of poses where every pose may be repeated for sev-
eral frames (Ghojogh et al., 2017). Hence, HMM can be
used for action recognition (Yamato et al., 1992).
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Action Sequence t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

Sit

1 stand stand stand sit sit sit × × × × × ×
2 stand stand sit sit sit sit sit sit × × × ×
3 stand stand stand stand stand sit sit × × × × ×
4 stand stand stand stand stand sit sit sit sit sit × ×
5 stand stand stand stand stand sit sit sit sit stand sit sit

Stand

1 sit sit sit stand stand stand × × × × × ×
2 sit sit sit sit sit sit stand stand × × × ×
3 sit sit stand stand stand stand stand × × × × ×
4 sit sit sit sit stand stand stand stand stand × × ×
5 sit sit sit sit stand stand stand sit stand stand stand ×

Turn

1 stand stand stand tilt tilt tilt × × × × × ×
2 stand stand tilt tilt tilt tilt tilt tilt × × × ×
3 stand stand stand stand stand tilt tilt × × × × ×
4 stand stand stand stand tilt tilt tilt tilt tilt tilt × ×
5 stand stand stand stand tilt tilt tilt stand tilt tilt tilt ×

Table 1. An example training dataset for action recognition

Action t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

Sit stand stand stand sit sit sit sit × × × ×
Stand sit sit sit sit stand stand stand × × × ×
Turn stand stand stand stand tilt tilt stand stand tilt tilt tilt

Table 2. An example test dataset for action recognition

Assume we have a set of actions denoted byW where the
actions are indexed by w ∈ {1, . . . , |W|}. We have |Qw|
training instances for every action where the training in-
stances are indexed by q ∈ {1, . . . , |Qw|}. Every training
instance is a sequence of observation symbols where the
symbols are the poses, e.g., sitting, standing, etc. An HMM
is trained for every action (Ghojogh et al., 2017; Mokari
et al., 2018). Training and testing HMMs for action recog-
nition is the same as training and test phases explained for
speech recognition.
The actions are performed with different sequence lengths
(fast or slowly) by different people. As HMM is robust
to different repetitions of states, the recognition of actions
with different pacing is possible.
In action recognition, we have a dataset of actions consist-
ing of several defined poses (Ghojogh et al., 2017; Mokari
et al., 2018). For example, if the dataset includes three ac-
tions sit, stand, and turn, the format of actions is as follows:

• Action sit: stand, stand . . . , stand︸ ︷︷ ︸
stand

, sit, sit . . . , sit︸ ︷︷ ︸
sit

• Action stand: sit, sit . . . , sit︸ ︷︷ ︸
sit

, stand, stand . . . , stand︸ ︷︷ ︸
stand

• Action turn: stand, stand . . . , stand︸ ︷︷ ︸
stand

, tilt, tilt . . . , tilt︸ ︷︷ ︸
tilt

where the actions are modeled as sequences of some poses,

i.e., stand, sit, and tilt. The actions can have different
lengths or pacing. An example training dataset with its in-
stances is shown in Table 1. In some sequences of dataset,
there are some noisy poses in the middle of sequences of
correct poses for making a difficult instance. An example
test dataset is also shown in Table 2. The three test se-
quences are different from the training sequences to check
the generalizability of the HMM models. Three HMM
models can be trained for the three actions in this dataset
and then, the test action sequences can be fed to the HMM
models to be recognized.

9. Conclusion
In this paper, we explained the theory of HMM for evalu-
ation, estimation, and training. We started with some re-
quired background, i.e., EM, factor graphs, sum-product
and max-product algorithms, forward-backward propaga-
tion, Markov and Bayesian networks, Markov property,
and DTMC. We then introduced HMM and detailed EM in
HMM. Evaluation in HMM was explained in both direct
calculation and forward-backward procedure. We intro-
duced estimation in HMM using the greedy approach and
the Viterbi algorithm. Training the HMM was also covered
using the Baum-Welch algorithm based on EM algorithm.
We also introduced speech and action recognition as two
popular applications of HMM.
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