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Abstract 13 

The current study aims to present a model to characterize changes in network traffic flows as a 14 

result of implementing connected and autonomous vehicle (CAV) technology based on traffic 15 

network and built-environment characteristics. To develop such a model, first, POLARIS agent-16 

based modeling platform is used to predict changes in average daily traffic (ADT) under CAVs 17 

scenario in the road network of Chicago metropolitan area as the dependent variable of the model. 18 

Second, a comprehensive set of variables and indicators representing network characteristics and 19 

urban structure patterns are generated. Three machine learning models namely K-Nearest 20 

neighbors, Random Forest, and eXtreme Gradient Boosting are developed and validated to 21 

establish the relationship between network characteristics and changes in ADT under CAVs 22 

scenario. The estimated models are found to yield acceptable performance. In addition, SHapley 23 

Additive exPlanations (SHAP) analysis tool is employed to investigate the impact of important 24 

features on changes in ADT, which discloses the most important link properties, network features, 25 

and demographic information in predicting change in ADT under the analyzed CAVs scenario.  26 

 27 
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1. Introduction  29 

Emergence of the connected and autonomous vehicles (CAVs) is a controversial topic in 30 

transportation community since they are expected to revolutionize both human mobility and goods 31 

transport in near future. In the United States, it is predicted that penetration of CAVs in light-duty-32 

vehicle fleet will be up to 24.8% by the year 2045, if the technology price annually drops by 5%, 33 

and Americans’ willingness to pay (WTP) increases by 5% in each year (1). Accordingly, with 34 

10% annual price reductions and WTP increases, penetration of CAVs can reach up to 87.2% (1). 35 

It is also reported in another study that, if CAVs prices decrease at rates of 15% or 20% per year, 36 

it is expected that their market share will be homogeneous and near 100% by the year 2050 (2). 37 
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Aligned with the rapid technological advancements in this area, most of major car companies have 38 

announced that they will release their fully autonomous vehicles in the next decade (3, 4).  39 

Given that CAVs have the potential to substitute the current vehicle fleet (5), a growing 40 

number of studies have focused on evaluating the impact of this new technology on different 41 

aspects of transportation systems. One aspect that is expected to be substantially affected by 42 

emergence this technology is travel demand (6). It is predicted that an AV fleet size of only one-43 

third the number of private vehicles would be enough to meet the demand generated today (7). 44 

Potential change in peoples’ preferences towards their vehicle ownership, mode of travel, and 45 

timing and sequence of travels are some examples of impacts of CAVs on travel demand. Travel 46 

safety is another dimension which is expected to be greatly affected as vehicle to vehicle 47 

communication systems can reduce the chance of collision of vehicles (8). There are several 48 

studies evaluating the effects of CAVs on travel safety (e.g., 6–8). Most of these studies have 49 

reported a considerable enhancement of safety as a result of CAVs deployment (11–13). A report 50 

published by KPMG indicates that about 90% of all types of vehicle accidents can be eliminated 51 

when CAVs substitute current vehicle fleet (14). Quite a few studies have also investigated the 52 

impact of connected vehicles or CAVs on energy consumption and emission and found 53 

inconclusive results with respect to environmental impacts of the technology (15–18).  54 

Network traffic condition is another major dimension of transportation system which is 55 

anticipated to be affected by CAVs technology (19–22). Analysis of flow-density diagram has 56 

shown that increasing partial penetration of CAVs can result in more stable traffic stream (15).  57 

Stability of traffic is found to be higher under CAVs scenario since automation and connection 58 

between vehicles can prevent shockwave formation (23). Regarding congestion, researchers found 59 

out that CAVs can benefit travel time through smoothing the traffic (15, 24, 25). Analysis of 60 

capacity under CAVs scenarios indicates that CAVs penetration rate of 75% increases the capacity 61 

by 25-35% (14). In another study, impact of CAVs on heterogenous traffic flow is simulated under 62 

different penetration rates. It is reported that  by increasing CAVs penetration rate up to 30%, 63 

capacity increases at a slow pace, and passing that penetration rate will result in faster capacity 64 

enhancements (26). A 50% penetration rate of CAVs can increase vehicle miles traveled (VMT) 65 

by 20%. Increasing penetration rate to 95% can result in 35% increase in VMT (14).  66 

Studies focusing on the impact of CAVs on transportation network are suffering from dearth 67 

of CAVs historical data, especially at the large scale, which can certainly affect reliability and 68 

accuracy of their results. Recently, a number of transportation simulation platforms have started 69 

to incorporate vehicle automation and connectivity features into their simulation process. For 70 

instance, several researchers have used VISSIM to simulate the impact of AVs or CAVs on 71 

highway capacity (14), car following behavior (27), emergency evacuation (28), etc. Zhang and 72 

Cassandras combined MATLAB and VISSIM to simulate the impact of CAVs on performance of 73 

a single urban intersection (16). To cope with limitation of microscopic simulation models, 74 

Talebpour and Mahmassani, proposed a novel acceleration framework as an alternative (23). 75 

Amoozadeh et al. employed VENTOS simulation framework to analyze impact of CAVs on 76 

different aspects of transportation system (29). In addition, other researchers proposed new 77 

simulation frameworks such as microscopic simulation framework of Rios-Torres and 78 

Malikopoulos to understand interaction of CAVs and human driven vehicles (HVs) at on-ramp 79 

merging area (15), and a java-based algorithm by Yang et al., to predict total flow and demand 80 

ratio of CAVs at intersections (21). 81 

POLARIS, as an advanced transportation simulation framework, is another simulation 82 

platform which is recently equipped with new modules to incorporate the simulation of CAVs 83 
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(30). The framework is developed by Argonne National Laboratory for Chicago and Detroit 84 

regions. The POLARIS modeling suite is an open-source agent-based modeling platform 85 

specifically designed for simulating large-scale transportation systems. The platform has been used 86 

to successfully simulate ITS interactions with regional demand, statewide long-distance passenger 87 

travel, and evacuations (31). Polaris is designed as a continuously integrated activity-based model 88 

and network supply model, where individuals plan and schedule their activities dynamically, 89 

engage in simulated travel, and re-plan activities on the fly due to changing traffic conditions, new 90 

information or external control. The dynamic, integrated nature of POLARIS means that it is well 91 

suited for simulating vehicle connectivity and automation and the impact on individual travel 92 

behavior.  93 

Using CAVs simulation results in POLARIS (32), the current study aims to present a data-94 

driven model to relate changes in network traffic flows as a result of implementing connected and 95 

autonomous vehicle (CAV) technology to traffic network and built-environment. It is worthwhile 96 

to note that the objective of this study is not assessing the impacts of CAVs, rather it aims to 97 

provide a data-driven model to model traffic flow changes as a function of network characteristics 98 

and built-environment factors. The proposed model can be applied in other geographical contexts 99 

where a CAV-based network simulator is not available. To develop such a model, we used results 100 

of simulations of CAVs in the Chicago metropolitan area, which were generated by POLARIS 101 

agent-based platform (32), specifically taking the changes in average daily traffic (ADT) as the 102 

dependent variable of the model. We have also integrated several other data sources along with 103 

feature engineering through link-based analysis to train three powerful machine learning models, 104 

K-Nearest Neighbors (KNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) to 105 

find out and analyze significant features and their level of importance in predicting changes in 106 

ADT of links under fully CAVs scenario. It is worth noting that although frequently-used machine 107 

learning techniques have performed very well in transportation studies (33), more advanced 108 

techniques such as deep learning and XGBoost along with a powerful analysis tool, SHAP, are 109 

recently employed and resulted in more robust and great performance (34–36). 110 

The remainder of this paper is organized as follows. First, different sources of data and 111 

feature generation are described in detail. Second, machine learning techniques employed in this 112 

study are explained in the methodology section. Then, in the results section, final models are 113 

presented and performance of them are compared. Finally, conclusion and limitations of this study 114 

are discussed. 115 

2. Data 116 

2.1. POLARIS Simulation Output 117 

As previously pointed out, one of the major challenges in conducting research on CAVs 118 

implications is the lack of historical data. Result of traffic simulation platform under CAVs 119 

scenarios can be an acceptable alternative to the historical data. In this study, we use results of 120 

simulations (29) of CAVs that were generated using the POLARIS platform that is developed by 121 

Argonne National Laboratory for Chicago and Detroit regions is employed (30).  122 

In (29) CAVs were represented in POLARIS by modifying several aspects of the simulation 123 

to account for the expected impacts. For example, travelers who use an AV are assumed to have a 124 

lower value of travel time, due to the reduced burden of driving, so the travel time utility 125 

parameters for all choices (mode, timing, destination, etc.) within the demand models were  126 

reduced for AV drivers based on literature review, with the value of time ranging from 100% down 127 
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to 50% of the current value.  Traffic flow impacts were represented using empirically estimated 128 

link capacity changes with cooperative adaptive cruise control (CACC) penetration from (37). This 129 

function relates increases in link capacity to the penetration of CACC-equipped vehicles in a 130 

vehicle stream. For more information about the implementation of CAV scenario in the POLARIS 131 

framework, the reader is referred to (32). 132 

In this study, we used POLARIS simulation results for two extreme scenarios: 0% 133 

penetration of CAVs (base scenario) and 100% penetration of CAVs (CAVs scenario) and 134 

calculated the difference of traffic flow for links of the Chicago network between these two 135 

scenarios. Traffic flow of links is simulated for a duration of 24 hours under the two scenarios. The 136 

daily traffic flows are referred to as ADT in this study, assuming that the POLARIS simulation 137 

results for a whole day period is a representative of the traffic condition during the year. 138 

Accordingly, the target variable is calculated through Equation 1. 139 

 140 

∆ ADT = ADT CAVs scenario  −  ADT base scenario  (1) 141 

 142 

Total number of 22,465 links from Chicago traffic network are considered in the POLARIS 143 

platform to generate traffic flow. Figure 1 shows the average value of change in ADT across 144 

different five road types: Freeway (8.5% of roads), Expressway (1.1% of roads), Ramp (9.3% of 145 

roads), Major & Minor (71.9% of roads), Collector & Local (9.2% of roads). Based on this figure, 146 

average change in ADT is significantly higher for freeway and expressway. Furthermore, 147 

classifying links into central business district (CBD) and non-CBD groups displays a tangible 148 

difference between the average change in ADT in links located inside and outside the CBD. 149 

 150 

Figure 1. Average of increase in ADT under CAVs scenario 151 

Figure 2 displays the change in ADT across the study area. According to this figure, freeways 152 

and expressways connecting downtown to suburban areas are impacted more than the other road 153 

types by CAVs scenario. That means, by implementing CAVs technology, changes in ADT of these 154 

expressways and freeways can exceed 32000 vehicles per day.  155 
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 156 
Figure 2. Change in ADT across the study area 157 

2.2. Link Properties Data 158 

Since our target variable, change in ADT, is a link-based parameter, all the features should be 159 

generated at the link level as well. Link properties include type of road, slope, length, and number 160 

of lanes. Intuitively, road type and other features such as connectivity are expected to have 161 

meaningful impacts on traffic flow. Finally, number of lanes is another important attribute of links 162 

which is used in training the models. Figure 3 shows the proportion of links with different number 163 

of lanes and the average of target variable for links with different number of lanes. Based on this 164 

figure, most of links in the data have 2 lanes. Accordingly, increasing number of lanes can increase 165 

the change in ADT. 166 

 167 

Figure 3. Number of lanes and average change in ADT  168 
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2.3. Network Data 169 

Features generated from traffic network of Chicago include connectivity index, distance to CBD, 170 

road density, and intersection density. Connectivity index is a feature which is generated for each 171 

link to represent the role of the link in creating linkage in the traffic network. It is expected that 172 

increasing number of links connected to the start node and end node of a link increases connectivity 173 

of that link. Therefore, connectivity index is defined through Equation 2 for each link. 174 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
(# 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑛𝑜𝑑𝑒 + # 𝑜𝑓𝑙𝑖𝑛𝑘𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑛𝑜𝑑𝑒)

𝐿𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ⁄                                     (2) 175 

 176 

Distance to CBD is another traffic network feature which is generated based on the distance 177 

between each link and the CBD of Chicago. To do so, first centroid of Chicago CBD and all the 178 

links are specified in the ArcMap and then the distance between the centroid of each link and 179 

centroid of CBD is calculated and assigned to the links.  180 

Finally, road density and intersection density are two traffic network features that are 181 

generated using the Environmental Protection Agency’s (EPA) Smart Location Database (38). EPA 182 

is a comprehensive source of data which includes demographic, employment, and built 183 

environment information for every census block group in the US. As mentioned earlier, all 184 

variables in this study should be prepared at the link level. Therefore, attributes of each census 185 

block group are assigned to the links which are passing through that block group. However, since 186 

there are many links which pass through multiple block groups, weighted average of attributes of 187 

those block groups is assigned to the link passes through them.  188 

2.4. Demographic Data 189 

Demographic data is another category that includes some features such as population, vehicle 190 

ownership, job per household, job density within 45-minute drive, etc. Similar to road and 191 

intersection density features, these features are generated from the EPA Smart Location Database. 192 

Hence, they are assigned from block groups to the links, as was done with the density of roads and 193 

intersections. 194 

2.5. Transportation Data 195 

Another type of data used in this study is transportation related data. Although there are several 196 

transportation related features in the EPA Smart Location Database, trip equilibrium index is 197 

selected to be used in model training. Trip equilibrium index is generated by calculating trip 198 

productions and trip attractions of block groups in such a way that values closer to one indicate 199 

that trip making at block group level is more balanced. Although we tested several transportation-200 

related variables in the EPA Smart Location Database, only trip equilibrium index is found to be 201 

significant in the models. 202 

2.6. Land-Use Data 203 

Another source of data used in this study is land use data provided by Chicago Metropolitan 204 

Agency for Planning (CMAP) which includes very detailed land-use information for the Chicago 205 

metropolitan area. CMAP land-use types can be divided into eight groups of 1) Residential, 2) 206 

Commercial, 3) Institutional, 4) Industrial, 5) Transportation, communication, utilities, and waste 207 

land uses, 6) Agriculture, 7) Open space, and 8) vacant/under construction. In order to assign land 208 

use variables to the links, a comprehensive GIS-based analysis has been conducted and different 209 

sizes of buffer area are created and tested around links. Having analyzed different sizes of buffer 210 



 7 

area, an area which covers 150 meters around a link is selected as the preferred size of buffer area 211 

for this study. Accordingly, for each link’s buffer area, percentage of area which is covered by each 212 

land use type is calculated and assigned to that link. Further, Table 1 shows the final set of 213 

explanatory variables used in the next step to train the models. 214 

Table 1. Description of explanatory variables 215 

Variable   Description  Mean 

     Link Properties     

 

 

 

    Freeway  1: if link type is freeway; 0: otherwise  0.08  

Expressway  1: if link type is Expressway; 0: otherwise  0.01  

lanes  Number of lanes  2.32 

     
Network     

     Dist_CBD  Distance from centroid of link to the centroid of CBD  32673.4 

Connectivity  Role of link in making connection between links of network  0.027 

Road_den  Total road network density  18.24 

Intersect_den  Street intersection density  84.91 

     
Demographic     

     Job  Jobs within 45 minutes auto travel time  264676 

HH_1veh  Number of households in block group that own 1 auto  260.87 

HH_2veh_  Number of households in block group that own 2 or more auto  355.44 

Pop_work_aged  Percent of population that is working aged  0.77 

G_pop_den  Gross population density (people/acre) on unprotected land  14.53 

Jobs_HH  Jobs per household  63.52 

Entertain_job  Entertainment jobs within a 5-tier employment classification scheme  233.70 

Pop  Population of block group  1673.87 

     
Transportation     

     Trip_equ_ind  Trip equilibrium index  0.41 

     
Land-use     

     Residential  Area of buffer zone around link covered by residential land use  0.024 

Commercial  Area of buffer zone around link covered by commercial land use  0.017 

Transport  Area of buffer zone around link covered by transportation related land use  0.011 

3. Methodology 216 

Three Machine Learning techniques, namely, K-Nearest Neighbors (KNN), Random Forest (RF) 217 

and eXtreme Gradient Boosting (XGBoost) are employed in this study due to their high estimation 218 

accuracy compared to the other ML and statistical models. A brief introduction to these models is 219 

provided in the following sub-sections.  220 

3.1. K-Nearest Neighbors 221 

One of the most popular supervised machine learning techniques, which is widely used for 222 

classification and regression, is the K-Nearest Neighbors technique. In this study, the KNN 223 

regression algorithm is used in which the output is a continuous value (change in ADT).  224 

Based on the training data points, which are described by multiple attributes, a feature space is 225 

formed, and each record is positioned in this space. Then, each unknown record (i.e., a data point 226 

from test data) is located in the feature space based on the value of its attributes and the KNN 227 
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technique looks for the k nearest neighbors for this record in the training data points. Thus, the 228 

value of target variable for this record is predicted based on the arithmetic average of the value of 229 

target variable of those data points which are selected as the k nearest neighbors.  230 

To measure the distance in order to find the closest (i.e., most similar) data points, different 231 

distance metrics could be used such as Euclidean distance which is one of the famous ones. 232 

Equation 3 represents the Euclidean distance between two points of 𝑋1 = (𝑥11, 𝑥12, … , 𝑥1𝑛) and 233 

𝑋2 = (𝑥21, 𝑥22, … , 𝑥2𝑛) with n attributes. 234 

 235 

Euclidean distance (𝑋1, 𝑋2) = √∑ (𝑥1𝑖 − 𝑥2𝑖)2𝑛
𝑖=1  (3) 236 

 237 

Finally, performance of the model is evaluated by comparing true value of test data points to 238 

the values which are predicted for these test data points by the model. 239 

3.2. Random Forest 240 

Random Forest (RF) is a Machine Learning technique which utilizes combination of several 241 

random Decision Trees (DTs). In DT technique, during the training process a feature selection 242 

method is used in order to choose the best attribute to be used at each node of the tree; this heuristic 243 

procedure also determines how to best split the node to two or more branches. Among different 244 

functions such as Mean Squared Error (MSE), Friedman_MSE, and Mean Absolute Error (MAE) 245 

to measure the quality of a split, the MSE technique is used in DT regressor model of this study 246 

which is equal to variance reduction as the feature selection criterion. Equation 4 presents the 247 

MSE function: 248 

 249 

MSE =
1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1  (4) 250 

 251 

In this equation, 𝜇  is the average of 𝑥𝑖  when i goes from 1 to n. Splitting on nodes is 252 

accomplished through reduction of variance in such a way that the weighted variance of lower 253 

level nodes should be less that the variance of upper level node.  254 

RF is capable of working with categorical and numerical data. One disadvantages of DT is 255 

that they are sensitive to the data on which they are trained. Hence, changing the training data can 256 

significantly impact the resulting DT. To this end, aggregating several trees can result in higher 257 

accuracy and decrease the probability of overfitting which might happen in an individual tree. 258 

In the RF, a technique called Bootstrap Aggregation which is also known as bagging is used to 259 

combine DTs. Bagging is a powerful method which is used to combine machine learning 260 

techniques in order to achieve higher accuracy than the individual machine learning technique. 261 

That is, different DTs are trained in parallel on different samples, selected randomly with 262 

replacement from the data, and the aggregation of these trees would be the output prediction of the 263 

RF model.   264 
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3.3. eXtreme Gradient Boosting (XGBoost) 265 

Although RF usually performs well by combining a large number of DTs and taking average of 266 

their outputs, DTs are generated independently in this technique. On the other hand, a more 267 

advanced model called XGBoost which is created from gradient boosted decision trees can 268 

improve the model performance through combining DTs in such a way that each new tree is 269 

impacted by previously trained trees, and this can help to reduce errors. In this ensemble learning 270 

technique, there are more parameters which need to be tuned to maximize model performance. 271 

Proper parameter tuning is essential for XGBoost to avoid overfitting or being too complex. It is 272 

also worth noting that RFs combine the results at the end of modeling procedure while XGBoost 273 

does it along the process. 274 

The parameters which should be tuned for XGBoost are as follows. First, number of 275 

iterations which is the number of trees fitted in the model. Second, maximum depth of the tree 276 

which is maximum number of splits and increasing this parameter can cause overfitting. Third, 277 

subsample which is the fraction of observations randomly selected for the training instances and 278 

can prevents overfitting. Forth is the learning rate used to shrink the weights and change the impact 279 

of each individual tree at each step which results in a more robust model. Next parameter is 280 

colsample_bytree which is subsampling the columns and can help prevent overfitting. The last two 281 

parameters are lambda and alpha that are L2 and L1 regularization terms on weights, respectively, 282 

and increasing their value makes the model more conservative. In this study parameters are tuned, 283 

and their values are as follows. The optimal XGBoost hyper-parameters values after cross-284 

validation process are: Number of iterations: 700, Max Depth: 7, Subsample: 0.8, Colsample 285 

bytree: 0.4, Lambda: 1.5, Alpha: 0.2, Learning Rate: 0.02. 286 

3.4. SHapley Additive exPlanations (SHAP) 287 

Interpreting output of machine learning techniques is often challenging. However, SHapley 288 

Additive exPlanations (SHAP) is a powerful tool for this which was proposed by Lundberg and 289 

Lee (39). SHAP is based ongame theory rules (40) and local explanations (41), and it can provide 290 

a means for estimating the contribution of each feature to the output of the model. Given an 291 

XGBoost model with a set of N features is used to predict an output 𝑣(𝑁), SHAP values are 292 

determined using several axioms to allocate the contribution of each feature through Equation 5. 293 

 294 

𝜙𝑖 = ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!𝑆⊆𝑁{𝑖} [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (5) 295 

 296 

Where ϕ_i is contribution of feature i in the model output, and it is allocated based on their 297 

marginal contribution (42). A linear function of binary features g is defined based on an additive 298 

feature attribution method shown in Equation 6 where M is the number of input features and 299 

𝑧′ ∈ {0, 1}𝑀, equals to 1 when a feature is observed, otherwise it equals to 0 (39). 300 

 301 

𝑔(𝑧′) = 𝜙𝑖 + ∑ 𝜙𝑖𝑧𝑖
′𝑀

𝑖=1  (6) 302 

4. Results  303 

To train the models, 70% of the data is randomly selected for training and the remaining 30% is 304 

used to validate the models. In addition, a 5-fold cross-validation procedure is applied on the 305 

training data. Therefore, at first the training data is divided to five subsamples randomly, and then 306 
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four subsamples are used to train the models while the remaining subsample is used as the 307 

validation data. We repeated this procedure 5 times so that each subsample is used exactly once as 308 

the validation data. This procedure helps us to measure whether a model is performing well 309 

consistently. 310 

Validation of three models shows that the KNN model, for which the optimal number of 311 

neighbors is found to be six, results in the accuracy of 83.5%, the RF model achieves accuracy of 312 

87.1%, and XGBoost yields the accuracy of 89.7%. Thus, XGBoost outperforms the other two 313 

models in terms of accuracy. In the Figure 4, true values and predicted values of test dataset are 314 

plotted for KNN, RF, and XGBoost techniques. 315 

 316 

 317 

Figure 4. Predicted values against true values: (a) KNN, (b) RF, (c) XGBoost 318 

After training the models, SHAP values of every feature are plotted in the Figure 5 to show which 319 

features are most important for the model as well as how these features can impact the XGBoost 320 

model. In this figure, first 11 important features are sorted by the sum of SHAP value magnitudes, 321 

then distribution of the impacts each feature has on the model output are displayed using SHAP 322 

values. The color spectrum from blue to red represent the magnitude of feature values from low to 323 

high, respectively. 324 
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 325 
Figure 5. SHAP summary plot 326 

Based on Figure 5, link properties including type of the roadway and number of lanes have 327 

the highest impact on the target variable (i.e., change in ADT) in such a way that increasing number 328 

of lanes and changing road type to Freeway and Expressway can increase likelihood of higher 329 

ADT in the CAVs scenario. Interestingly, next most important feature is gross population density 330 

so that for the roads passing through zones with denser gross population the change in ADT 331 

between base and CAVs scenario can decrease. The next important feature is distance to CBD, and 332 

it has a direct impact on the target variable meaning for the roads close to the CBD the change in 333 

ADT is less than that of roads far from the CBD. It could stem from that traffic of roadways which 334 

are close to the CBD are already higher than other roadways so that the impact of CAVs in 335 

increasing the ADT is less for these roads. Figure 1 can also show the increase in ADT under 336 

CAVs scenario is slightly less for CBD roadways. 337 

 Intersection density of the zones through which roadways are passing is the next important 338 

features. However, based on Figure 5, when intersection density is lower, ADT would increase 339 

slightly more. Next important feature is number of jobs near the roadway and this feature has a 340 

direct impact on the target variable meaning that when there are more job opportunities around a 341 

road, the change in ADT would be higher. Road density is the next important feature which has a 342 

similar impact to intersection density. The next two features are jobs per household and 343 

connectivity, respectively, which have indirect impact on the target variable. That is, for lower 344 

values of these features impact of CAVs on change in ADT increases. Finally, according to Figure 345 

5, when number of households with two or more vehicles increases in a block group, ADT of 346 

roadways passing through this block group is expected to increase more under CAVs scenario.  347 

It is worth noting that the reasons provided in this section are not definite and we tried to 348 

analyze features based on the observed data and our understanding about it. In addition, although 349 

some features might seem correlated, it doesn’t impact the performance of the models, especially 350 

in tree-based models.      351 
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5. Conclusion 352 

This study presented a data-driven model to relate changes in network traffic flows as a result of 353 

implementing CAV technology to characteristics of the traffic network and built environment. To 354 

develop such a model, we used changes in ADT under CAVs scenario in traffic network of Chicago 355 

metropolitan area, which is generated by POLARIS agent-based platform. Using other sources of 356 

data and feature engineering techniques, three machine learning models, KNN, RF and XGBoost, 357 

are trained to predict impact of CAVs on traffic flow based on link-based features. Changes in 358 

daily traffic flows of traffic network links is an indicator considered in this study and using data-359 

driven methods, it was modeled at the regional level and cross-validated in the same context. This 360 

study demonstrates approaches that are useful for identifying the most important factors that 361 

influence the changes in traffic flow attributable to widespread adoption of CAVs and for 362 

quantifying the importance of each of these factors. We demonstrated these methods using results 363 

of previous simulations of a CAVs scenario in the POLARIS (from (32)), and we took advantage 364 

of different sources of data and powerful machine learning techniques to model the impacts of 365 

CAVs on ADT. 366 

It is found that traffic flows will most likely increase in most of the road types in case of fully 367 

CAVs scenario. SHAP feature analysis also shows that properties of links have the highest impact 368 

on target variable. Gross population density is the next important feature which has an indirect 369 

impact on ADT. Next, distance of links from the CBD as well as other network features are the 370 

second most important, and finally, attributes of block groups around the links such as 371 

demographic, transportation and land uses are, respectively, less important, but still significant 372 

features in predicting traffic flow in the CAV scenario analyzed.  373 

Results of this study offer powerful methods that we validated for the Chicago metropolitan 374 

area. Future work should test and hopefully validate these methods in analyzing simulations under 375 

other conditions, such as different levels of CAVs penetration, or in other geographical contexts, 376 

or perhaps for transferring simulation results from one geographical area to others. This is 377 

important, since agent-based transportation demand models that model appropriate behaviors and 378 

choices for metropolitan areas are difficult to develop and validate, and methods to analyze and 379 

generalize results from existing models would be very valuable. 380 
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