A Non-Linear Ohm’s Law – A Phenomenological Approach

Luiz C.L. Botelho(1)(2)

Departamento de Matemática Aplicada
Instituto de Matemática Aplicada, Universidade Federal Fluminense
Rua Mario Santos Braga
Niterói, CEP 24220-140, Rio de Janeiro, Brasil
e-mail: botelho.luiz@superig.com.br

Abstract

We deduce from the second Newton’s law the medium constitute Ohm’s law for an electrical flow in a medium with square power law for the conductor resistivity.

Key words: Non-Linear Ohm’s Law.
The elementary and phenomenological discussions of the electrical conductivity in mediums without recourse to Quantum Mechanics always have been made in a context where the effective medium resistance has an effective behavior of a linear damping term proportional to the flow’s velocity ([1],[2]). In this pedagogical comment we present an elementary approach on electrical conductivities in a medium with a non-linear quadratic polynomial damping term on the electron flow velocities [3].

Let us start our analysis from the second Newton’s law applied to a one-dimensional electron flow through a conductor with a square power law for the conductor resistance under the presence of a steady electric field (electron mass \(m_e = 1 \))

\[
\frac{dV}{d\tau} = eE - \nu V^2 \quad (1)
\]

\[
V(0) = 0 \quad (2)
\]

here \(V(\tau) \) is the one-dimensional electron velocity and \(I(\tau) = \rho AV(\tau) \) is the current flow where \(A \) is the normal cross section of the conduction and \(\rho \) is the electron charge density.

The solution of the Riccati equation (1) can be obtained through the substitution

\[
V(t) = \frac{1}{\nu} \frac{dy(t)/dt}{y(t)} \quad (3)
\]

with \(y(t) \) satisfying the linear equation

\[
\frac{d^2y(t)}{dt^2} - (\nu eE)y(t) = 0
\]

\[
y(0) = y_0; \quad y'(0) = 0 \quad (4)
\]

the solution of eq.(4) is easily given by

\[
y(t) = c_1 e^{(\sqrt{\nu eE})t} + c_2 e^{-(\sqrt{\nu eE})t} \quad (5)
\]

By performing the inverse transformation in eq.(3) we obtain the physical electron flow velocity

\[
V(\tau) = \sqrt{\frac{eE}{\nu}} \left(\frac{1 - e^{-2(\sqrt{\nu eE})t}}{1 + e^{-2(\sqrt{\nu eE})t}} \right) \quad (6)
\]

In a steady-state processes (the asymptotic \(t \to \infty \) limit), we get:

\[
V_s = \sqrt{\frac{eE}{\nu}} \quad (7)
\]
and leading, thus, to the non-linear Ohm’s law (note that $E = \hat{V}/d$), namely

$$I = \rho A \sqrt{\frac{e\hat{V}}{\nu d}}$$ \hspace{1cm} (8-a)$$

or

$$\hat{V} = I^2 \bar{R}$$ \hspace{1cm} (8-b)$$

with the effective electrical resistance

$$\bar{R} = \frac{\nu d}{\rho^2 A^2 e}$$ \hspace{1cm} (9)$$

At this point and just for completeness let us analyze the more general case with the microscopic friction law $\alpha V + \nu V^2$ (α and ν positive constants):

$$\frac{dV(\tau)}{d\tau} = eE - \alpha V - \nu V^2$$ \hspace{1cm} (10)$$

$$V(0) = 0$$ \hspace{1cm} (11)$$

By performing the Riccati transformation (3) in eq.(9) we obtain

$$\frac{d^2 y(\tau)}{d\tau^2} + \alpha \frac{dy(\tau)}{d\tau} - (e\nu) y(\tau) = 0$$ \hspace{1cm} (12)$$

with $y(0) = y_0$ and $y'(0) = 0$.

As a consequence we have the result

$$V(\tau) = \frac{\alpha}{2\nu} (\gamma - 1) \left[1 - A e^{\alpha \gamma \tau} \right]$$ \hspace{1cm} (13)$$

Here $\gamma = \left(1 + \frac{4\nu E}{\alpha^2} \right)^{1/2}$ and A is a constant. The steady solution is thus given by the $\tau \rightarrow \infty$ limit in the above equation

$$V_c = \frac{\alpha}{2\nu} (\gamma - 1) = \frac{1}{\nu} \left[-\frac{\alpha}{2} + \frac{\alpha}{2} \sqrt{1 + \frac{4\nu E}{\alpha^2}} \right]$$ \hspace{1cm} (14)$$

and thus, giving the associated non-linear Ohm’s law

$$\bar{I} = \frac{\rho A \alpha}{\nu} \left[-1 + \sqrt{1 + \frac{4\nu E}{\alpha^2}} \right]$$ \hspace{1cm} (15)$$
or to the generalization of eq(8-b):

\[\hat{V} = \left(\frac{\alpha d}{\bar{
ho}Ae} \right) \bar{I} + \left(\frac{\nu d}{\bar{
ho}^2A^2e} \right) \bar{I}^2 \]

(16)

Acknowledgements: Luiz C.L. Botelho is thankful to professor Helayel Netto (DCP-CBPF) for support.

References

