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Abstract 
Background: Spatiotemporal parameters can characterize the gait patterns of individuals, allowing 
assessment of their health status and detection of clinically meaningful changes in their gait. Video-based 
markerless motion capture is a user-friendly, inexpensive, and widely applicable technology that could 
reduce the barriers to measuring spatiotemporal gait parameters in clinical and more diverse settings. 
Research Question: Do spatiotemporal gait parameters measured using Theia3D markerless motion capture 
demonstrate concurrent validity with those measured using marker-based motion capture? 
Methods: 30 healthy adult participants performed treadmill walking at self-selected speeds while 2D video 
and marker-based motion capture data were collected simultaneously. Kinematic-based gait events were 
used to measure nine spatiotemporal gait parameters from both systems independently. The parameters 
were compared using their group means, Bland-Altman methods, Pearson correlation coefficients, paired-
samples t-tests, and intraclass correlation coefficients (ICC(A-1) and ICC(C-1)). 
Results: Group means between marker-based and markerless methods were indistinguishable across all 
nine gait parameters, and the Bland-Altman plots showed no systematic biases or clinically meaningful 
differences between the systems. Pearson correlation coefficients indicated perfect or near-perfect 
correlation (r ≥ 0.96) between systems for gait speed, cadence, step time, step length, stride length, stride 
width and stance time, and strong correlations (r ≥ 0.87) for double-limb support time and swing time. T-
tests indicated differences in stance, swing, and double-limb support time parameters. Strong correlations 
were found for both ICCs, with the lowest being ICC(A-1) of 0.84 for both double-limb support time and 
swing time. 
Significance: The high level of agreement and correlation between both systems indicate that the Theia3D 
markerless motion capture system is sufficiently accurate for measuring spatiotemporal gait parameters for 
research, clinical, and other uses. The results presented here for healthy adults during treadmill walking do 
not necessarily reflect the performance of the markerless system under different conditions. 
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1. Introduction 

Gait analysis is a useful tool for assessing and comparing human movement patterns to gain 
insight into a variety of health-related factors. Marker-based optoelectronic motion capture has often been 
considered the ‘gold standard’ for gait analysis, but its high cost and requirements for experienced 
operators and dedicated laboratory space have prompted the development and validation of alternative 
technologies. Some examples of alternative technologies include instrumented walkways [1], depth 
sensors [2], photoelectric cell systems [3], inertial measurement units [4], and in-shoe pressure sensors 
[5]. However, these technologies still require expensive equipment, and may have limited options for 
deployment or provide minimal data. Two-dimensional (2D) video-based markerless motion capture is an 
emerging technology that has the potential to accurately measure human motion and eliminate issues 
associated with marker-based motion capture and other alternative technologies. Several different 
approaches to 2D video-based markerless motion capture have been developed and implemented to 
varying levels of success, feature recognition being one such approach [6–8]. Feature recognition 
employs deep learning techniques such as neural networks to identify and track the movement of specific 
anatomical landmarks in single or successive photographic images. This process allows the pose of 
human subjects to be estimated based on the positions of the tracked anatomical landmarks. The feature 
recognition approach to 2D video-based markerless motion capture has several benefits over depth 
sensor-based approaches such as the Microsoft Kinect or video-based surface registration approaches, two 
alternative approaches to markerless motion capture. Some benefits include there being no need for 
specific technology, no need to separate or subtract the background of the image from the subject, and the 
ability to make pose estimates despite occlusion of the subject. Feature recognition has been implemented 
in Theia3D software (Theia Markerless Inc., Kingston, ON) using an array of synchronized and calibrated 
2D video cameras and a deep convolutional neural network to estimate human pose in three-dimensions 
(3D). Theia3D has the potential to precisely determine the pose of humans during any dynamic activity, 
wearing any clothing, and in any environment, which would drastically increase the ease of and 
opportunities for collecting human movement data. If this technology is capable of measuring 
spatiotemporal gait parameters with similar accuracy to marker-based motion capture, it would increase 
the opportunities to apply the findings of clinical gait research and their impact on patient outcomes. 
These spatiotemporal gait parameters have been shown to be useful clinical measures that can detect 
‘negative’ changes in individuals’ gait patterns due to pathology [9–12] or aging [13], and ‘positive’ 
changes due to rehabilitation [14,15] or locomotor training [16–18]. However, it is crucial that they are 
obtained using objective techniques to ensure adequate accuracy and repeatability [19].  

The objective of this work was to determine if the spatiotemporal gait parameter measurements 
obtained by using the Theia3D markerless motion capture system were equivalent to those from a field-
accepted marker-based motion capture system during treadmill walking gait. 
 
2. Methods 
2.1 Theia3D Markerless Motion Capture 

Theia3D is a markerless motion capture software that performs 3D pose estimation using 
artificial intelligence, specifically deep learning. Cameras are placed to establish a 3D volume captured by 
their 2D views and calibrated to determine their position and orientation in 3D space. For this work, 
calibration was performed using a markered wand with known dimensions since the cameras used could 
be calibrated in this way; however, the use of other calibration objects with known dimensions is 
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supported by the software. The calibrated cameras synchronously record video data while the subject 
performs a task in the capture volume. Given these synchronized video data, Theia3D performs feature 
extraction on the 2D images to identify and locate anatomical landmarks and joint positions in 3D space. 
This feature detection is performed using deep convolutional neural networks that are trained on a dataset 
of over 500,000 images, which included images from a proprietary dataset and Microsoft COCO [20]. 
These images, which show humans in a wide array of settings, clothing, and performing various activities, 
had their anatomical landmarks and joint positions manually labelled by highly trained annotators. 
Quality assurance was performed on all labelled points by a second individual. The visual features that 
correspond to these keypoints were learned by the algorithm, and once learned can be applied to any 
image. Given an input image and the known camera locations, the algorithm detects and locates the 
keypoints in 3D, then applies an articulated multi-body model from which the motion of the subject is 
measured. 
 
2.2 Participants 

Thirty healthy, recreationally active individuals (15 male/15 female, mean (SD) age: 23.0 (3.5) 
years, height: 1.76 (0.09) m, weight: 69.2 (11.4) kg) were recruited to participate in this study at the 
Human Mobility Research Laboratory in Kingston, Ontario. Participants gave written informed consent 
and this study was approved by the institutional ethics committee. Exclusion criteria included having 
suffered any lower-limb injuries in the previous 9 months, having any neuromuscular, musculoskeletal or 
metabolic impairments that could prevent their performance of walking, running, or jumping tasks, or 
currently taking medication for any neurological, cardiovascular, or metabolic disorders. 
 
2.3 Experimental Setup 

Participants walked on a treadmill while two camera systems were used to simultaneously capture 
their movement: a marker-based camera system consisting of seven Qualisys 3+ cameras (Qualisys AB, 
Gothenburg, Sweden) which recorded marker trajectories, and a markerless camera system consisting of 
eight Qualisys Miqus cameras (Qualisys AB, Gothenburg, Sweden) which recorded 2D video. These 
cameras were used for the purpose of this comparison since their data could be spatially and temporally 
synchronized by connecting them to a single instance of Qualisys Track Manager (Qualisys AB, 
Gothenburg, Sweden). However, any system consisting of at least two synchronized video cameras would 
be sufficient to collect similar data. Both systems collected data at 85 Hz and were calibrated 
simultaneously using a markered wand of known dimensions, resulting in one shared global reference 
frame. These factors permitted a fair comparison of the two systems. 
 
2.4 Experimental Procedure 

Participants wore minimal, tightly fitting clothing typical of marker-based motion capture 
methods, and their personal running shoes. Retroreflective markers were affixed to relevant anatomical 
landmarks and rigid clusters of retroreflective markers were affixed to the shanks and thighs. Starting at 
an initial speed of 1.2 m/s, participants walked on the treadmill and determined a comfortable, self-
selected walking speed. Following an acclimatization period of two minutes, ten consecutive four-second 
trials were collected. 
 
2.5 Data Analysis 
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 Marker-based motion capture data were tracked in Qualisys Track Manager and the 2D video 
data for markerless motion capture were processed in Theia3D to obtain 3D pose estimates of each body 
segment. The tracked marker data and the markerless 3D pose estimates, which were exported as 4x4 
pose matrices, were both analyzed further using Visual3D. 

In Visual3D, two skeletal models (one for marker-based and one for markerless) with 
homologous segments were defined from a static posture such that their segment local coordinate systems 
were identical in this static posture. These two models used independent tracking data; one tracked the 3D 
marker trajectories (marker-based), while the other tracked the 4x4 pose matrices (markerless). These 
models were generated for every participant and applied to all trials collected from the respective 
participant.  

Independent, kinematically-defined gait events were generated for the marker-based and 
markerless models using the method described by Zeni Jr. et. al. [21]. This method detects heel-strike and 
toe-off events using kinematic data of the metatarsal head and heel markers. In order to determine these 
events using the markerless motion capture system, virtual markers were added to the markerless model at 
the same positions as those real markers in the static posture, but which tracked the motion of the 
markerless model’s feet. If this method were to be used without the presence of markers, the anatomical 
landmarks identified by the markerless system could be used to generate the virtual markers instead. The 
independent gait events were used to measure the time- and distance-based spatiotemporal gait 
parameters of each participant from both motion capture systems separately. The gait parameters were 
measured for all strides within the ten four-second trials and a mean of both sides of the body was 
obtained for each subject. The parameters compared in this work were gait speed, cadence, step time, 
stance time, swing time, double-limb support time, step length, stride length, and stride width, and are 
described in further detail in Table 1. Parameters were computed in Visual3D and exported to MATLAB 
(MathWorks, Natick, MA) for further analysis. 
 
Table 1: Descriptions of the included spatiotemporal gait parameters. 

Gait Parameter Description 

Gait Speed Distance covered per second, calculated as the measured stride length divided by the 
measured stride time, reported in meters per second [m/s]. 

Cadence Rate of leg turnover, calculated as 60 seconds divided by the measured step time, reported in 
steps per minute [steps/min]. 

Step Time Time elapsed between heel-strike of the contralateral foot and the successive heel-strike of 
the ipsilateral foot, reported in seconds [s]. 

Stance Time Time elapsed between heel-strike of the ipsilateral foot and the successive toe-off of the 
same foot, reported in seconds [s]. 

Swing Time Time elapsed between toe-off of the ipsilateral foot and the successive heel-strike of the 
same foot, reported in seconds [s]. 

Double-Limb 
Support Time 

Time elapsed while both feet are in contact with the ground and taken as the sum of the two 
instances of double-limb support during one gait cycle, reported in seconds [s]. 
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Step Length 
Distance from the position of the proximal contralateral foot (ankle joint) at the previous 
contralateral heel-strike to the position of the proximal ipsilateral foot (ankle joint) at the 
ipsilateral heel-strike taken in the direction of progression, reported in centimeters [cm]. 

Stride Length 
Distance from the position of the proximal ipsilateral foot (ankle joint) at ipsilateral heel-
strike to the position of the proximal ipsilateral foot (ankle joint) at the successive ipsilateral 
heel-strike taken in the direction of progression, reported in centimeters [cm]. 

Stride Width 
Perpendicular distance between the position of the proximal contralateral foot (ankle joint) 
at contralateral heel-strike to the vector between positions of the proximal ipsilateral foot 
(ankle joint) at successive ipsilateral heel-strikes, reported in centimeters [cm]. 

 
2.6 Statistical Analysis 
 Means and standard deviations for each gait parameter were calculated for each subject and 
across all subjects. Bland-Altman methods were used to compare the measurements taken by both 
systems on each subject by plotting the difference between the two measurements made on each subject 
against the average of the two measurements, providing insight into the bias and variability in the 
differences between the systems [22]. Limits of agreement (LoA) were included to show the range of 
differences between measurements that could be expected from the two systems, and 95% confidence 
intervals were used to show the possible range over which the LoA could have been found (Carkeet, 
2015). Pearson’s correlation coefficient (r) was calculated to assess the correlation between the 
markerless and marker-based systems and paired-samples t-tests were used to detect significant 
differences between the sample means. Intraclass correlation coefficients (ICC) of the form (C-1) and (A-
1) were calculated to assess consistency between measurement systems and agreement within subjects, 
respectively [23]. 
 
3. Results 
 The independent kinematic gait events determined from the marker-based and markerless models 
were found to have high agreement across all subjects, with greater than 80% of all events detected within 
two frames of each other (time difference <0.0235 seconds) and only 3% of events detected more than 
four frames apart (0.0471 seconds). The distributions of the differences between the gait events obtained 
from the marker-based and markerless models are shown in Figure 1. 
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Figure 1: Relative frequency distributions of the difference between independent kinematic gait events detected 
based on the marker-based and markerless models, where the difference is calculated as (marker-based event frame 
number) - (markerless event frame number).  
 

Means and standard deviations across all 30 subjects for the nine spatiotemporal gait parameters 
included were found to be nearly identical when measured by the marker-based and markerless motion 
capture systems (Table 2, Figure 2, Supplementary Material). Mean gait speed was 1.41 m/s for both the 
marker-based and markerless systems, compared to 1.40 m/s calculated using the actual treadmill belt 
speed. The sample means measured by both systems were identical for cadence, step time, stance time, 
swing time, stride length, and stride width, and varied minimally for mean double-limb support time and 
step length. Violin and Bland-Altman plots for gait speed, cadence, and step length are included as 
examples in Figure 2; the remaining gait parameter figures are included in the Supplementary Material. 
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Figure 2: Bland-Altman and violin plots of gait speed, cadence, step time, and step length measurements. Bland-
Altman plots show the difference between the marker-based and markerless measurements against the average of the 
marker-based and markerless measurements. Violin plots show the distribution of the marker-based and markerless 
measurements for all thirty subjects. Minimal detectable change values used are from a[33], b[34], c[35]. 
 
 Differences in the gait parameters measured by the marker-based and markerless motion capture 
systems were very small and randomly distributed for all parameters as demonstrated by the Bland-
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Altman plots (Figure 2, Supplementary Materials). No relationships between the level of difference and 
the average measurement were visually observed, indicating there is no proportionality bias between the 
two systems. The biases between system measurements were very small for all gait parameters, with 
several parameters demonstrating no bias. The 95% limits of agreement were generally distributed 
equally on either side of the bias. The 95% confidence intervals on the limits of agreement were within 
the minimal detectable change (MDC) values from the literature in all cases except stance time and swing 
time. The positive and negative stance time confidence intervals and the positive swing time confidence 
interval extended slightly beyond the minimal detectable change, indicating there is a possibility that 
those limits of agreement could have been found slightly outside of the MDC range. 
 The sample distributions from the marker-based and markerless motion capture systems shown in 
the violin plots were nearly indistinguishable for all included parameters (Figure 2, Supplementary 
Materials). The Pearson correlation coefficients indicated perfect correlation between the marker-based 
and markerless motion capture systems’ measurements of gait speed, cadence, step time, step length, and 
stride length (Table 2). Stance time and stride length also demonstrated very high correlation between 
systems, while swing time and double-limb support time had the lowest correlation coefficients of 0.88 
and 0.87, still indicating excellent agreement (ICC > 0.75, Cicchetti, 1995) between the markerless and 
marker-based systems for all gait parameters (Table 2). No significant differences between the marker-
based and markerless measurements of gait speed, cadence, step time, step length, stride length, and stride 
width were found based on paired-samples t-tests (Table 2). 
 
Table 2: Comparison of spatiotemporal gait parameter measurements obtained from the marker-based and 
markerless motion capture systems, including means, standard deviations, Bland-Altman biases and limits of 
agreement, paired samples t-test p-values, Pearson’s correlation coefficients (r), and intraclass correlation 
coefficients (ICCs) for consistency and agreement between measurement systems.  

Gait 
Parameter 

Marker-
Based 

Mean (SD) 

Markerless 
Mean (SD) 

B-A Bias 
(95% LoA) 

P-
value 

r Consistency 
ICC 
(C-1) 

Agreement 
ICC 

 (A-1) 
Gait Speed 

[m/s] 
1.41 

(0.19) 
1.41 

(0.19) 
0.00 

(-0.002, 0.002) 0.52 1.00 1.00 1.00 

Cadence 
[steps/minute] 

112.6 
(4.1) 

112.6 
(5.0) 

0.05 
(-0.63, 0.73) 0.44 1.00 1.00 1.00 

Step Time [s] 0.54 
(0.02) 

0.54 
(0.02) 

0.00 
(-0.002, 0.003) 0.28 1.00 1.00 1.00 

Stance Time [s] 0.70 
(0.02) 

0.70 
(0.03) 

-0.005 
(-0.02, 0.01) 0.001 0.98 0.98 0.98 

Swing Time [s] 0.37 
(0.02) 

0.37 
(0.02) 

0.006 
(-0.01, 0.02) 0.001 0.88 0.88 0.84 

Double-Limb 
Support Time 

[s] 
0.33 

(0.04) 
0.32 

(0.04) 
-0.01 

(-0.05, 0.02) 0.003 0.87 0.87 0.84 

Step Length 
[cm] 

75.0 
(3.1) 

75.1 
(3.6) 

0.033 
(-0.38, 0.45) 0.40 1.00 1.00 1.00 

Stride Length 
[cm] 

150.1 
(3.6) 

150.1 
(3.8) 

0.02 
(-0.75, 0.79) 0.77 1.00 1.00 1.00 

Stride Width 
[cm] 

14.1 
(1.4) 

14.1 
(1.5) 

0.2 
(-1.2, 1.2) 0.86 0.96 0.96 0.96 
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4. Discussion 
 Spatiotemporal parameters are simple measures that effectively characterize gait patterns, 
allowing overall health status to be monitored and clinically meaningful changes to be detected. For this 
reason, researchers and clinicians have sought to incorporate them into clinical practice. The goal of this 
work was to determine if spatiotemporal gait parameters for healthy gait measured using a markerless 
motion capture system were equivalent to those from a marker-based motion capture system. If 
demonstrated with healthy gait and subsequently with impaired gait, this system could increase the 
clinical use and impact of spatiotemporal gait measurements. The findings presented here showed that 
spatiotemporal gait parameters from both systems demonstrated excellent agreement for healthy gait.  

Marker-based motion capture is a widely accepted technology that can accurately measure 
spatiotemporal gait parameters; however, these systems are expensive, require dedicated laboratory space 
and experienced operators, and are time intensive to use. Currently, there are a wide variety of alternative 
technologies more suitable for clinical applications that have demonstrated the ability to accurately and 
reliably measure spatiotemporal gait parameters. Of the alternative technologies, pressure-sensitive 
walkways have had perhaps the greatest success in translation to clinical use due to their simplicity and 
ease of use. They have been implemented to study the gait patterns of children [24], older adults [25], 
individuals with Parkinson’s disease [26], dementia [27], multiple sclerosis [28], and post-stroke patients 
[29] as a few examples. Despite the many benefits of these systems, they are limited to being used in 
straight, over-ground walking scenarios with their smooth, padded surface as the walking surface. These 
characteristics of the data collection process differ significantly from real-world walking, the majority of 
which is performed on inconsistent, rough surfaces with obstacles and turns to negotiate. Depth sensor-
based technologies such as the Microsoft Kinect present another solution to collecting spatiotemporal gait 
data in clinical settings, and their validity has been demonstrated for several scenarios including over-
ground walking [30], treadmill walking [31], and stair ambulation [32]. However, depth sensors have a 
limited range and it can be challenging to use more than one sensor without causing interference in their 
measurements, reducing the environments in which they can be used. 

Markerless motion capture technology represents a simple and inexpensive technology that has a 
high potential for gait analysis given its lack of requirements of the walking surface, environment, or 
path. Previous work has been done towards using markerless motion capture technology for gait analysis, 
but this work is the first to validate spatiotemporal gait parameter measurements from a video-based 
markerless motion capture system against those from an accepted marker-based system for treadmill 
walking. The Theia3D markerless motion capture system does not require a specialized camera system, 
and is not limited by the collection environment. Without such restrictions, this system presents the 
opportunity to collect accurate spatiotemporal gait data at a reduced cost and time requirement compared 
to marker-based systems, and with the possibility of fully automating the analysis and reporting 
processes. We found that the two methods were indistinguishable for a variety of spatiotemporal gait 
parameters between the Theia3D markerless motion capture software and the marker-based motion 
capture system. The parameters with the lowest agreement and correlation were time-based measures 
whose differences were on scales similar to the duration of one camera frame (~0.0118 seconds). 
Considering the use of imperfect kinematic-based gait event detection methods that allowed independent 
events to be used for the two systems, the scale of the differences and the parameters in which they were 
observed are unsurprising. Any timing differences in the detection of gait events would affect the 
measurement of spatiotemporal gait parameters and increase the differences in measurements between the 
two systems, particularly for time-based parameters. Thus, it is reasonable to assume that the differences 
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between the markerless and marker-based spatial gait parameters would decrease when paired with force-
detected gait events, however this work has demonstrated their similarity even without force-based event 
detection. 

Despite the high level of agreement between spatiotemporal gait parameters measured using the 
marker-based and markerless motion capture systems, there are limitations to the present findings. The 
sample was comprised of healthy, active, young individuals which is not representative of the typically 
older, injured, or pathological population for which gait analysis is often used. In addition, the data 
collection was performed with participants walking on a treadmill. Since the markerless motion capture 
system is a purely image-based approach that examines each frame individually, its measurement of 
walking patterns is theoretically independent of the subject’s health status and appearance, the collection 
environment, and whether they are walking over-ground or on a treadmill. However, the lack of 
sensitivity of the markerless system to these changes has yet to be confirmed. Subsequent work will 
investigate these factors and test the ability of markerless motion capture to measure spatiotemporal gait 
parameters in wider applications. 

Based on the results presented here, the Theia3D markerless motion capture system is capable of 
accurately measuring spatiotemporal gait parameters of healthy adults during treadmill walking. In 
addition, markerless motion capture presents the potential to quickly collect large amounts of 
spatiotemporal gait data, reduce inter-operator and inter-laboratory effects present in marker-based 
motion capture, and allow data collection in realistic settings and conditions. 
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