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Linearized Dynamics of General
Flux-Pinned Interfaces

1

2

Frances Zhu and Mason A. Peck3

Abstract—A flux-pinned interface offers a passively stable equi-4
librium that otherwise cannot occur between magnets because elec-5
tromagnetic fields are divergenceless. The contactless, compliant6
nature of flux pinning offers many benefits for close-proximity7
robotic maneuvers, such as rendezvous, docking, and actuation.8
This paper derives the six degree-of-freedom linear dynamics about9
an equilibrium for any magnet/superconductor configuration. Lin-10
earized dynamics are well suited to predicting close-proximity11
maneuvers, provide insights into the character of the dynamic sys-12
tem, and are essential for linear control synthesis. The equilibria13
and stability of a flux-pinned interface are found using Villani’s14
equations for magnetic dipoles. Kordyuk’s frozen-image model15
provides the nonlinear flux-pinning response to these magnetic16
forces and torques, all of which are then linearized. Comparing17
simulation results of the nonlinear and linear dynamics shows the18
extent of the linear model’s applicability. Nevertheless, these sim-19
ple models offer computational speed and physical intuition that a20
nonlinear model does not.21

Index Terms—Dynamics, linear systems, magnetoelectric22
effects, superconducting magnets.23

I. INTRODUCTION24

EARNSHAW’S theorem states that there is no stable sta-25

tionary equilibrium for point charges that are solely held26

together by electrostatic forces [1]. Because they are also diver-27

genceless, magnetic fields offer no stable equilibria except at28

the origin or at infinity. This is not the case for flux-pinned mag-29

nets, for which a stable equilibrium can exist for any number30

of magnets at arbitrary relative positions and orientations. Flux31

pinning a magnet to a superconductor creates an equilibrium,32

or minimum potential energy well, that stabilizes the magnet’s33

position and orientation.34

An external magnetic field excites current vortices within a35

superconductor, which is a material that carries current with-36

out resistance. Cooling a Type II superconductor to below its37

transition temperature in the presence of a magnetic field es-38

tablishes permanent current vortices, which persist as long as39

the superconductor’s temperature stays below this threshold.40

The flux-pinning effect influences the dynamics of kilogram-41
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scale bodies out to about 10 cm of separation distance. The 42

energy in the magnetic field determines the range. 43

In early empirical studies of flux pinning, Williams noticed 44

potential curves that resemble a volcano, with a minimum at 45

the center of the disc and a maximum near the edge [2]. He 46

proposed a model consisting of a repulsive magnetic field source 47

(the mobile image) superimposed upon an attractive magnetic 48

field source (the frozen image). 49

There are two conventional methods to model the mag- 50

netization of the superconductor: Bean’s critical-state model 51

and Kordyuk’s frozen-image model [3], [4]. The critical-state 52

model is general but numerically intensive because it is based 53

on a finite-element analysis of interactions among—ideally— 54

infinitesimally small magnetization loops. The accuracy of 55

Bean’s model depends on the resolution of magnetization loops, 56

which cannot be feasibly solved in real time for problems of 57

practical interest. Kordyuk’s advanced frozen-image model rep- 58

resents the position and orientation of the two images within the 59

superconductor geometrically, an approach that yields drasti- 60

cally simpler and faster real-time representations for feedback- 61

control architectures. The frozen-image model omits the effects 62

from physical parameters such as temperature, material, and 63

geometry, but these may be accounted for in a modified frozen- 64

image model [5]. For simplicity, the following assumptions are 65

made. Critical current density is assumed to be infinite. For 66

familiar problems, this limitation has no practical effect. The 67

induced magnetic field is greater than the first critical magnetic 68

field—again, an issue that rarely arises in practical applications. 69

The temperature is low enough that scaling and hysteretic effects 70

are negligible, although Yang offered a method to incorporate 71

elastic hysteresis [6]. These assumptions, as well as the previous 72

ones, are readily accommodated in systems designed for ana- 73

lyzability. Kordyuk’s model and the magnetic moment dipole 74

model provide the foundation for many subsequent analytical 75

assessments of flux-pinned dynamics and are the basis for the 76

rest of this paper [7], [8]. 77

Kordyuk created an analytical model to explain the image 78

effects of flux pinning, known as the frozen-image model [4]. 79

Kordyuk’s geometric relation between magnet parameters and 80

image parameters is graphically depicted in–Fig. 2 and fur- 81

ther discussed in Section II. Other authors (Alqadi [9], Cansiz 82

[10], Suguira [11], etc.) have written primarily about finding 83

the potential fields of magnet/superconductor arrangements or 84

the equilibria of magnet/superconductor arrangements in three 85

or less degrees of freedom. This paper derives the most general 86

case of six degrees of freedom. 87
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Fig. 1. Cryocooled superconductor with a pinned permanent magnet sus-
pended in gravity.

Q1

Fig. 2. Geometric relationship among the equilibrium, frozen image, mobile
image, superconductor and magnet [4].

A flux-pinned interface offers many benefits for robotics ap-88

plications, namely, passive stability, compliance, absence of89

mechanical contact, and low mass requirements. Flux-pinned90

systems can be actively manipulated to control the orientation91

and position of close-proximity vehicles while remaining con-92

tactless and compliant [12]. Traditional, linear control synthesis93

may be successful for such systems, but the inherently non-94

linear dynamics must be linearized to provide a suitable plant95

model. A linearized model also provides valuable insights into96

the system, such as stability, natural frequencies, and modes.97

This study focuses on a general, linear model for these reasons.98

II. MAGNETIC FIELD SOURCES99

The general expression for magnetic field strength at distance100

ρ from the field source is (1) [10]. m is the magnetic moment101

of the dipole of interest. From (1), the magnetic field strength102

decreases with distance cubed. The expression for magnetic103

field strength can be related to a flux-pinned mobile image, flux-104

pinned frozen image, electromagnet, or permanent magnet. The105

magnetic field is a function of two variables: m the magnetic106

moment dipole and ρ the distance from the field source. m is a107

parameter determined by the physical nature of the source. ρ can108

be defined or measured in the physical system. The expression109

for magnetic moment dipoles differs for each type magnetic110

field source.111

B (ρ) = μ0

4π |ρ|3 (3 (m · ρ̂) ρ̂ − m̂) . (1)

A. Physical Magnet 112

There are two types of physical magnetic field sources: per- 113

manent magnets and electromagnets. The magnetic moment 114

dipole of a permanent magnet is purely defined by physical 115

characteristics in (2). B0 is the manufacturer’s measurement of 116

the magnetic field at the surface of the magnet. d is the distance 117

from the center of dipole to the surface. m̂ p is the unit direction 118

of the magnetic moment dipole. The electromagnetic moment 119

dipole is represented by (3), where V (t) is the voltage potential of 120

the electromagnet, A is the area enclosed by the electromagnet’s 121

coil of wire, T is the number of turns of the electromagnet, and 122

R is the resistance of the electromagnet. Besides their physical 123

differences, they mathematically represent a physical magnetic 124

moment dipole m p. Fig. 3(a) graphically depicts the relationship 125

among variables. The two physical magnetic field sources differ 126

in the physical parameters that make up the magnetic moment 127

dipole expression. 128

m p = 2π B0d3

μ0
m̂ p (2)

mE = V AT

R
m̂E . (3)

129

B. Mobile/Diamagnetic Image 130

All superconductors display the Meissner effect, which is the 131

expulsion of magnetic flux. The magnetic source that creates 132

the Meissner effect may be represented as an image within 133

the superconductor that changes the polarity and magnitude to 134

always repel. That image, more specifically, follows the external 135

magnetic source and reorients to the moment dipole to mirror the 136

external magnetic source. The mobile image’s magnetic moment 137

dipole depends on the permanent magnet’s moment dipole and 138

the orientation of the superconductor, given by (4). mmag is 139

the vector from (2) or (3) that represents the physical magnet’s 140

moment dipole. m̂s is the unit direction normal to the surface of 141

the superconductor, illustrated in Fig. 3(b). The mobile image 142

moves when the permanent magnet moves, so the location of 143

the magnetic field from the mobile image is dynamic. rmag and 144

rm change in the expression for magnetic field and potential 145

energy, respectively. The magnetic field of the magnet’s mobile 146

image from Fig. 3(b) is given by (5), where ρm is the distance 147

from the mobile image to the permanent magnet that is given 148

by (6), where rm is the location of the mobile image and Os 149

is a point on the superconductor surface. The mobile image’s 150

magnetic moment dipole location and orientation are dependent 151

on the superconductor’s geometry. 152

mm = mmag − 2
(
m̂s · mmag

)
m̂s (4)

ρm = rmag − rm (5)

rm = rmag − 2
((

rmag − Os
) · m̂s

)
m̂s. (6)

C. Physical Magnet 153

The frozen image is an image specific to high temperature 154

or Type II superconductors. Instead of expelling all magnetic 155
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Fig. 3. Different types of magnetic field interactions. (a) Geometric representation of permanent magnet or electromagnet magnetic field source positions.
(b) Geometric representation of mobile image magnetic field source positions. (c) Geometric representation of frozen-image magnetic field source positions.
(d) Geometric representation of frozen image and mobile image overlaid at field-cooled position.

flux like Type I superconductors do, Type II superconductors156

field-cool a magnetic field during a transition phase and expel157

external fields that differ from the embedded field. This property158

allows for the stable presence of a field, in this application, in-159

finitesimal magnetic dipole. The frozen image is a consequence160

of the presence of an infinitesimal magnetic dipole a priori and161

a posteriori cryocooling, which embeds a field in the supercon-162

ductor that enforces restoration to this initial state. To counter163

the mobile image’s repulsion, the frozen image acts as an at-164

tractive infinitesimal magnetic dipole that stays in place and165

aligns magnetic moment dipoles with the field-cooled magnet.166

The frozen image’s magnetic moment dipole depends on the167

magnetic moment dipole field-cooled onto the superconductor168

and the orientation of the superconductor, as shown in (7) and169

geometrically in Fig. 3(c). Equations (8) and (9) are analogous170

to the frozen-image distance vectors. Like the mobile image,171

the frozen image is dependent on the superconductor’s geom-172

etry, but, unlike the mobile image, it does not move when the173

permanent magnet moves after field cooling.174

m f = 2 (m̂s · mFC ) m̂s − mFC (7)

ρ f = r FC − r f (8)

r f = r FC − 2 ((r FC − Os) · m̂s) m̂s. (9)

III. LINEARIZED DYNAMICS FOR A SINGLE FLUX-PINNED175

MAGNET AND SUPERCONDUCTOR INTERACTION176

The linearized dynamics for the simplest flux-pinned inter-177

face is derived. The dynamics are solely dependent on the mag-178

netic field source’s position and orientation, along with physical179

parameters specific to the system geometry. Each subsection180

describes the linearization process briefly before presenting the 181

final linearized equation set. 182

A. Linearizing General Magnetic Dipole Force and Torque 183

Equations 184

Villani derived the force of a magnetic dipole mb acting on 185

another magnetic dipole ma at distance ρ, given by (10) shown at 186

the bottom of this page, in which the scalars are brought out front 187

and all vectors are unit direction vectors [4]. The final linearized 188

force equation relates the first-order terms δFab to δr, δma, 189

and δmb, all vectors denoting deviation from equilibrium. To 190

linearize about ρe, mae, and mbe, a first-order Taylor expansion 191

of (10) was taken by replacing Fab = Fe + δFab, ρ = ρe + 192

δr , ma = mae + δma, and mb = mbe + δmb. The equilibrium 193

force is subtracted from both sides. The cross products and dot 194

products are replaced with cross and transpose operators (v× 195

to v× and v· to vT ), and then rearranged to isolate the first- 196

order terms. To transform the linear equation to matrix form, 197

notice that the quantities in front of δr, δma, and δmb are 3 198

× 3 matrices. The final matrix expression for linearized force 199

between two magnetic moment dipoles is given by (11) shown 200

at the bottom of this page. The moment/torque of a magnetic 201

dipole mb acting on another magnetic dipole ma at distance ρ 202

is given by (12), shown at the top of the next page, also derived 203

by Villani [5]. The same process of linearization is applied to 204

Villani’s moment equation to yield (13) shown at the top of the 205

next page. 206

B. Linearized Forces and Torques for Flux-Pinned Forces and 207

Torques 208

The total force from a flux-pinned interaction is the superpo- 209

sition of the mobile image force and frozen-image force. These 210

Fab = 3μ0mamb

4πρ4
((ρ̂ × m̂a) × m̂b + (ρ̂ × m̂b) × m̂a − 2ρ̂ (m̂a · m̂b) + 5ρ̂ ((ρ̂ × m̂a) · (ρ̂ × m̂b))) (10)

δFab = 3μ0

4π |ρe|5

⎡

⎢⎢
⎢⎢⎢⎢
⎣

m×
bem×

ae + m×
aem×

be − 2mT
aembe1− − 5

|ρe |2
(
ρe

(
ρ×

e mbe
)T

m×
ae − ρe

(
ρ×

e mae
)T

m×
be

)
+ · · ·

− 5
|ρe |2

((
ρ×

e mae
)×

mbe + (
ρ×

e mbe
)×

mae − 2
(
mT

aembe
)
ρe + 5

|ρe|2
((

ρ×
e mae

)T (
ρ×

e mbe
))

ρT
e

)

−m×
beρ

×
e + (

ρ×
e mbe

)× − 2ρemT
be + 5

|ρe |2 ρe
(
ρ×

e mbe
)T

ρ×
e

(ρemae)× − m×
aeρ

×
e − 2ρemT

ae + 5
|ρe |2 ρe

(
ρ×

e mae
)T

ρ×
e

⎤

⎥⎥
⎥⎥⎥⎥
⎦

T

⎡

⎢
⎣

δr

δma

δmb

⎤

⎥
⎦ (11)
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τ ab = μ0mamb

4πρ3
(3 (m̂a · ρ̂) (m̂b × ρ̂) + (m̂a × m̂b)) (12)

δτ ab = μ0

4π |ρe|3

⎡

⎢⎢
⎣

3
|ρe |2

(
mT

aeρem×
be + mT

beρem×
ae −

(
3

|ρe|2 mT
aeρem×

beρe + m×
aembe

)
ρT

e

)

3
|ρe |2 m×

beρeρ
T
e − m×

be

− 3
|ρe|2 m×

aeρeρ
T
e − m×

ae

⎤

⎥⎥
⎦

⎡

⎣
δr

δma

δmb

⎤

⎦ . (13)

images are magnetic field sources that impart linearized forces211

given by (11). The frozen-image force is found by substituting212

mae to me, the magnet’s equilibrium magnetic moment dipole,213

and mbe to m f e, the frozen image’s equilibrium magnetic mo-214

ment dipole, into (11). The frozen image will never change215

in orientation; thus, δm f = 0. The linearized force from the216

frozen image is given by (14) shown at the bottom of this page.217

The mobile image force, given by (16), is similarly obtained by218

substituting mae to me, the magnet’s equilibrium magnetic mo-219

ment dipole, and mbe to mme, the mobile image’s equilibrium220

magnetic moment dipole, into (11). From Kordyuk’s geomet-221

ric interpretation of the frozen-image model, the mobile image222

reorients itself like a mirror image across the superconductors223

surface, where m̂s is the unit normal to the superconductor’s224

surface given by (4). A direct relation from m to mm is given by225

(15) shown at the bottom of this page. This relationship reduces226

the number of independent state variables. The mobile image227

force equation depends only on the magnet’s orientation and 228

position, given by (16) shown at the bottom of this page. The 229

forces from the mobile and frozen images are additive and may 230

be combined to a final equation for force on the system, given by 231

(17) shown at the bottom of this page. The total force is depen- 232

dent on the physical magnet’s position and orientation, which 233

constitutes the translational dynamic state of the flux-pinned 234

interaction. 235

The total torque from a flux-pinned interface is the sum of the 236

combined frozen and mobile image effects. The frozen-image 237

torque is obtained by substituting mae to me, the magnet’s equi- 238

librium magnetic moment dipole, and mbe to m f e, the frozen 239

image’s equilibrium magnetic moment dipole. The orientation 240

of the frozen image does not change, so the state δm f and the 241

corresponding coefficient are excluded, given by (18) shown at 242

the top of the next page. The same process is applied to the 243

mobile image. Substituting (15) into our previous equation, we 244

δF f = 3μ0

4π |ρe|5

⎡

⎢⎢
⎣

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe |2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e

⎤

⎥⎥
⎦

T

[
δr
δm

]
(14)

mm =
(

1− − 2m̂s m̂T
s

)
m (15)

δFm = 3μ0

4π |ρe|5

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe|2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe |2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe |2 ρe
(
ρ×

e mme
)T

ρ×
e + · · ·

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

T

[
δr

δm

]

(16)

δFtot = 3μ0

4π |ρe|5

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe |2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)
+ · · ·

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe |2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)
+ · · ·

− 5
|ρe |2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e + · · ·

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe|2 ρe
(
ρ×

e mme
)T

ρ×
e + · · ·

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

T

[
δr

δm

]

.

(17)



IEE
E P

ro
of

ZHU AND PECK: LINEARIZED DYNAMICS OF GENERAL FLUX-PINNED INTERFACES 5

δτ f = μ0

4π |ρe|3

⎡

⎣
3

|ρe|2
(

mT
e ρem×

f e + mT
f eρem×

e −
(

3
|ρe |2 mT

e ρem×
f eρe + m×

e m f e

)
ρT

e

)

3
|ρe|2 m×

f eρeρ
T
e − m×

f e

⎤

⎦

T [
δr

δm

]

(18)

δτ m = μ0

4π |ρe|3

⎡

⎢
⎣

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe |2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

3
|ρe |2 m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe |2 m×
e ρeρ

T
e + m×

e

)

⎤

⎥
⎦

T [
δr

δm

]

(19)

δτ tot = μ0

4π |ρe|3

⎡

⎢⎢⎢⎢
⎣

3
|ρe|2

(
mT

e ρem×
f e + mT

f eρem×
e −

(
3

|ρe |2 mT
e ρem×

f eρe + m×
e m f e

)
ρT

e

)
+ · · ·

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe|2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

3
|ρe|2 m×

f eρeρ
T
e − m×

f e + 3
|ρe|2 m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe |2 m×
e ρeρ

T
e + m×

e

)

⎤

⎥⎥⎥⎥
⎦

T

[
δr

δm

]

. (20)

reduce the number of states needed to calculate δmm given by245

(19) shown at the top of the next page. The total torque on the246

magnet is the sum of the torque from the mobile and frozen247

images, given by (20) shown at the top of this page. The total248

torque is solely dependent on the physical magnet’s position249

and orientation, which constitutes the rotational dynamic state250

of the flux-pinned interaction.251

C. Governing Equations252

For the case of a single magnet and single superconductor, the253

magnet’s dynamics are due to the forces and torques from the254

frozen and mobile images. In this single magnet case, there are255

two magnet moment dipoles that are exerting forces and torques256

on the magnet. The force and torque equations are given by (21)257

and (22), respectively. The translational dynamics of the flux-258

pinned magnet is a result of the force balance equation (23). The259

linear momentum balance, given by (24), is put into matrix form260

to be easily inserted into a state-space form later. Euler’s rigid261

body equation (25) propagates attitude dynamics. The linearized262

version of the rigid body equations is given by (26). Equation263

(27) simplifies to no longer include the gyroscopic dynamics264

because the magnitude of angular velocity at equilibrium is 0.265

The orientation of the magnet may be represented by an Euler266

axis-angle (28), and alternatively by a quaternion (29). In this267

case, the Euler axis is the magnetic moment dipole unit vector,268

and the angle may be chosen to be π because the magnet is ax-269

isymmetric. Choosing π retains most of the information about270

the magnetic moment dipole-pointing vector. Upon inspection,271

the fourth component of the quaternion about equilibrium will272

always be zero; thus, no information is lost if the quaternion state273

vector is shortened to just the vector components qv . To prop-274

agate the attitude dynamics, there is a linear relation between275

the quaternion and angular velocity that yields the quaternion276

derivative, given by (30). This set of equations fully defines the277

linearized dynamics of a rigid body.278

∑
F = F f + Fm (21)

∑
τ = τ f + τ m (22)

∑
F = M r̈ (23)

δ r̈ = M−1δFtot (24)

279

τ = I · ω̇ + ω × (I · ω) (25)

δω̇ = I −1
(
ω×

e I − (Iωe)×
)
δω + I −1τ (26)

δω̇ = I −1δτ (27)

δm = θδm̂ (28)

δq =
[

δm̂ sin
(

θ
2

)

cos
(

θ
2

)

]

(29)

δq̇v = 1

2
qve × δω. (30)

D. State-Space Model 280

The single magnet flux-pinned system dynamics may be rep- 281

resented with a first-order system state-space matrix, given by 282

(31). The state matrix has the form given in (32). Each entry in 283

the state matrix is a block matrix of size corresponding to the 284

state and resultant, where the following ai j values are given by 285

(34)–(40). The matrix entries ai j are block matrices of size 3 × 286

3 that are generated from the linearized forces and torques from 287

(17) and (20), respectively. Eq. (37)."(40) shown at the bottom 288

of the next page. 289

⎡

⎢⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥⎥
⎦

= A

⎡

⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥
⎦

(31)

⎡

⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

0 1− 0 0

a21 0 a23 0

0 0 0 1
2 q×

ve

a41 0 a43 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥⎥
⎦

(32)

δ ṙ = δ ṙ (33)

δq̇v = 1

2
qve × δω (34)

δ r̈ = a21δr + a23δqv (35)

δω̇ = a41δr + a43δqv (36)
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Fig. 4. Frozen and mobile images from magnet j acting on magnet i across
superconductor k.

IV. LINEARIZED RIGID BODY DYNAMICS FOR AN ARBITRARY290

NUMBER OF MAGNETS AND SUPERCONDUCTORS291

For a system of M rigidly constrained magnets on a rigid292

body with each magnet flux pinned to N fixed superconductors,293

each superconductor will store M frozen images. The system of294

permanent magnets will feel the effect of each Nth supercon-295

ductor’s embedded images, in which each superconductor holds296

M frozen images, totaling M × N frozen images. An equal num-297

ber of mobile images pair with the frozen image counterparts,298

yielding a total 2 × M × N images that generate forces and299

torques. Assuming the magnets are rigidly mounted together,300

the summation of the forces on each magnet yields the total301

force on the body at the magnet bodies’ center of mass.302

A single flux-pinned interaction happens between the images303

of magnets i and j, in which magnet j produces frozen and mo-304

bile images on superconductor k, given by (41) and shown in305

Fig. 4. Magnet j produces frozen and mobile images on multiple306

superconductors, which all affect magnet i. The total contribu- 307

tion of magnet j’s images onto magnet i is the summation of 308

all individual flux-pinned interactions between magnets i and 309

j across all superconductors, given by (42). The total force on 310

magnet i from all magnet images is the sum of all magnet j 311

influences across all superconductors, given by (43). The total 312

force on a rigid body is the summation of total force on each 313

magnet I, given by (44). 314

The torque is similar to the force summation with an extra 315

term attributed to the force with a moment arm on magnet i, 316

given by (45). The total torque on a rigid body is analogous to 317

the total force equation but also includes a torque from each 318

force displaced from the center of mass, given by (46). These 319

two summation equations can be rearranged into a linear set 320

of equations using the same linearization techniques from the 321

single magnet single superconductor case. 322

Fi j k = Ffrozen + Fmobile (41)

Fi j =
M∑

k=1

(Ffrozen + Fmobile)k (42)

Fi =
N∑

j=1

M∑

k=1

((Ffrozen + Fmobile)k) j (43)

FC O M =
N∑

i=1

N∑

j=1

M∑

k=1

(
((Ffrozen + Fmobile)k) j

)
i

(44)

τ i =
N∑

j=1

M∑

k=1

((τ frozen + τmobile)k) j + ρ i × Fi (45)

τ C O M =
N∑

i=1

N∑

j=1

M∑

k=1

(
((τ frozen + τmobile)k) j

)
i
+

M∑

i=1

ρ i × Fi .

(46)

a21 = M−1 3μ0

4π |ρe|5

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe|2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+

− 5
|ρe |2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe |2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)
+

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe|2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)

− 5
|ρe|2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(37)

a23 = M−1 3μ0 |me|
4π |ρe|5

⎛

⎜⎜⎜⎜
⎝

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e +

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe |2 ρe
(
ρ×

e mme
)T

ρ×
e +

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎞

⎟⎟⎟⎟
⎠

(38)

a41 = I −1 μ0

4π |ρe|3

⎛

⎜
⎝

3
|ρe|2

(
mT

e ρem×
f e + mT

f eρem×
e −

(
3

|ρe |2 mT
e ρem×

f eρe + m×
e m f e

)
ρT

e

)
+

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe|2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

⎞

⎟
⎠ (39)

a43 = I −1 μ0 |me|
4π |ρe|3

(
3

|ρe|2
m×

f eρeρ
T
e − m×

f e + 3

|ρe|2
m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe|2
m×

e ρeρ
T
e + m×

e

))
. (40)
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The state space of the single magnet single superconductor323

case has 12 state variables: translational position, translational324

velocity, quaternion vector, and angular velocity of the magnet.325

For the general case of an M magnet N superconductor inter-326

action, the states will include those 12 state variables for each327

magnet on the rigid body, i.e., 12M total states. The most general328

plant, given in (47), is a simplification of the multiple magnet329

and multiple superconductor plant to a matrix of block matri-330

ces, where δzi = [δr iδ ṙ iδqviδωi ]T and Ai,j is the linearized331

dynamics of magnet i due to magnet j’s images.332

⎡

⎢
⎢
⎣

δ ż1

...

δ żm

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A1,1 · · · A1,M

...
. . .

...

AM,1 · · · AM,M

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δz1

...

δzm

⎤

⎥
⎥
⎦ (47)

Four Jacobians provide the basis for the partitions in the Ai, j333

matrix of (47): force and torque as a function of position and334

orientation. The single magnet and single superconductor plant335

is derived using this general form Ai, j , given by (48). The mag-336

net images affecting the dynamics can be from any magnet’s337

images embedded in any superconductor. Every interaction is338

pairwise and all block matrices are populated. The larger sys-339

tem variables are analogous to the single magnet and single340

superconductor variables in (33)–(40). The velocity of magnet341

i is only the velocity of magnet j, when i = j . The quaternion342

derivative of magnet i is only propagated when magnet j = i .343

Any magnetic moment dipole from an image is established from344

magnet j about superconductor k. Any magnetic moment dipole345

from a magnet is established from magnet i. The distance vectors346

are calculated from magnet j’s images about superconductor k to347

magnet i. These equations constitute the entries of the linearized348

state matrix, forming the basis of a linearized flux-pinning dy-349

namics model for magnet i from specific magnet j’s images from350

superconductor k. a21,i j , a23,i j , a41,i j , and a43,i j are expressions351

with summation over all N superconductors.352

⎡

⎢⎢⎢⎢
⎣

δ ṙ i

δ r̈ i

δq̇vi

δω̇i

⎤

⎥⎥⎥⎥
⎦

= Ai, j

⎡

⎢⎢⎢⎢
⎣

δr j

δ ṙ j

δqv j

δω j

⎤

⎥⎥⎥⎥
⎦

(48)

where353

Ai, j =

⎡

⎢⎢⎢⎢
⎣

0 a12,i j 0 0

a21,i j 0 a23,i j 0

0 0 0 a34,i j

a41,i j 0 a43,i j 0

⎤

⎥⎥⎥⎥
⎦

.

The output states of a rigid body about the center of mass are354

translational position, translational velocity, attitude, and angu-355

lar velocity of the magnet. For the M magnet N superconductor356

case, the input state includes the position, velocity, attitude, and357

angular velocity of every magnet j, where A j represents the358

contribution to body dynamics from magnet j’s state, given by359

(49). a21, j , a23, j , a41, j , and a43, j are expressions with summa-360

tion over all N superconductors and M magnets. An analogous361

operation would be to sum each Ai, j block matrix along each 362

column or ith index, resulting in A j . These 3 × 3 block matrices 363

form the basis of a linearized flux-pinning dynamics model for 364

a rigid body with all M magnets. 365

⎡

⎢⎢⎢⎢
⎣

δ ṙC O M

δ r̈C O M

δq̇vC O M

δω̇C O M

⎤

⎥⎥⎥⎥
⎦

= [
A1 . . . AM

]

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

δr1

δ ṙ1

δqv1

δω1

...

δrm

δ ṙm

δqvM

δωm

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

(49)

where 366

Ai, j =

⎡

⎢⎢⎢⎢
⎣

0 a12,i j 0 0

a21,i j 0 a23,i j 0

0 0 0 a34,i j

a41,i j 0 a43,i j 0

⎤

⎥⎥⎥⎥
⎦

.

V. SENSITIVITY AND COMPARISON OF SINGLE MAGNET AND 367

SINGLE SUPERCONDUCTOR DYNAMICS 368

To validate the linearized dynamics and investigate the dy- 369

namic sensitivity of each state, a simulation with the full nonlin- 370

ear dynamic equations is compared to the linearized state space. 371

The fully nonlinear simulation also offers a second method 372

to validate the linearized state space, using a common soft- 373

ware package. Dynamic characteristics of the linearized state 374

space are discussed, followed by a comparison of the nonlinear 375

dynamic time histories and the derived linearized state-space- 376

propagated dynamics to generate the RMS error. Finally, this 377

paper studies the sensitivity of force and torque by indepen- 378

dently varying each state. 379

A. Defining System Parameters 380

The specific magnet chosen is that of strength 0.8815 T and 381

diameter 0.75 in. If z represents the vertical height in the Carte- 382

sian coordinate space, the magnet is field-cooled 1 cm above the 383

superconductor. Both the superconductor and magnet are point- 384

ing directly upward. The position of the permanent magnet from 385

an arbitrary origin on the superconductor surface is represented 386

by r1. The magnetic moment dipole of the permanent magnet 387

contains a field strength and a unit direction, represented by 388

m1. The orientation of the superconductor is the surface normal 389

unit vector, given by m̂s. The mass matrix is the mass of the 390

permanent magnet, multiplied by an identity matrix, given by 391

M. R is the radius of the spherical magnetic moment dipole. I is 392

the inertia tensor of the spherical magnet. 393

From these physical parameters, the image parameters are 394

found. r f is the position of the frozen image. rm is the position 395

of the mobile image. ρe is the position vector from the images 396
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TABLE I
SINGLE MAGNET AND SUPERCONDUCTOR CASE STUDY PARAMETERS

to the permanent magnet when in equilibrium, which is also the397

field-cooled position. The equilibrium magnetic moment dipole398

is equivalent to the field-cooled orientation of the permanent399

magnet me. The frozen-image magnetic moment dipole m f e400

is of the same orientation as the permanent magnet orienta-401

tion when field-cooled. The mobile image magnetic moment402

dipole mme is the mirrored orientation as the permanent mag-403

net orientation when field-cooled. Table I presents a complete404

list of system parameters. All code is online and available at405

github.com/frankiezoo/SMSS Linear Dynamics.git.406

B. Linearizing a Nonlinear Simulation and Deriving407

Linearized Matrix408

After building a nonlinear dynamics model of a single magnet409

and single superconductor, the model is linearized with the help410

of the Linear Analysis Toolbox from MathWorks Simulink. The411

input perturbation states are the quaternion and the position of412

the permanent magnet. The output measurement is the force and413

torque. The state space produced from Simulink’s linearization414

produces (50). The single magnet and single superconductor415

plant from (32) is modified to include the four Jacobians from416

Simulink’s linearization process from (49), given by (51). The417

state matrix generated from the simulation is equivalent within418

machine precision to the linearized state matrix derived in the419

preceding sections.420

J =
[

∂ F
∂ r

∂ F
∂q

∂τ
∂ r

∂τ
∂q

]

(50)

⎡

⎢⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

0 1− 0 0

M−1 ∂ F
∂ r 0 M−1 |me| ∂ F

∂q 0

0 0 0 1
2 q×

ve

I −1 ∂τ
∂ r 0 I −1 |me| ∂τ

∂q 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥⎥
⎦

.

(51)

C. Modal Analysis of Linearized Flux-Pinned Model421

Modal analysis of a dynamic system reveals stability and fre-422

quency information. The eigenvalues and eigenvectors are found423

with the linearized state-space matrix. The plant derived in Sec-424

tion V-B has the following eigenpairs. The flux-pinned system425

is marginally stable because all eigenvalues have a 0 real com-426

ponent. The numerical values associated with each eigenpair427

TABLE II
SINGLE MAGNET AND SUPERCONDUCTOR EIGENPAIRS

manifest different properties in the physical system, as shown 428

in Table II. 429

The first ten eigenvalues of the flux-pinned plant are all imagi- 430

nary, which represent the spring-like nature of flux-pinned inter- 431

faces. Due to the axial symmetry of the magnet, the eigenvalues 432

representing the x and y dynamics come in quadruplets. The 433

eigenvectors with imaginary values must be paired with the 434

conjugate eigenvector to manifest real physical dynamics. In- 435

tuitively, flux-pinned interfaces have stiffer translational joints 436

than rotational joints. The modal analysis reveals the same con- 437

clusion, where the z translation has the highest stiffness, the 438

x and y translations are also relatively high, and the x and y 439

rotations have the lowest stiffness. 440

The first four modes show a relation between the rotation 441

and translation about the x and y axes. The rotation is the main Q2442

modal shape, but contributes to the translation. This stiffness is 443

rather high. The next four modes, 5–8, show a relation between 444

the rotation about the x and y axes. The rotation about one axis 445

is the main modal shape, but the rotation about the other axis is 446

also a significant modal. This stiffness is the lowest of all modes. 447

Modes 9 and 10 strictly reflect translation in the z direction. It 448

has the highest stiffness of all the modes. The last modes have 449

0 eigenvalues because the dynamics of the system do not resist 450

to any perturbation of these states. Any perturbation in q3, or 451

the magnetic strength of the magnet, results in translation in the 452

z direction. Any perturbation in the rotation about the z-axis q3 453

results in rotation about the z-axis until another perturbation or 454

energy dissipation is introduced. 455

D. Sensitivity of Linearized Dynamics due to State Variation 456

Although the linearized plant is nearly exact to machine pre- 457

cision error at equilibrium, the linear plant approximates non- 458

linear dynamics less accurately the further the system deviates 459

from equilibrium. Figs. 5–9 show sensitivity plots varying state 460

variables and correlating error in force and torque calculations 461

between the linearized equations and nonlinear equations. The 462

translation and rotation in the x and y directions are the same due 463
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Fig. 5. Error in force and torque between linearized and nonlinear models
when varying displacement along the x direction.

Fig. 6. Error in force and torque between linearized and nonlinear models
when varying displacement along the y direction.

Fig. 7. Error in force and torque between linearized and nonlinear models
when varying displacement along the z direction.

to symmetry, as shown in Figs. 5, 6, 8, and 9. There is no rotation464

in the z direction because the magnet is axially symmetric. The465

most sensitive state is the translational displacement in the z di-466

rection, as shown in Fig. 7. The equilibrium separation distance467

from the superconductor surface is 1 cm, or 10−2 m. To retain468

Fig. 8. Error in force and torque between linearized and nonlinear models
when varying rotation along the x direction.

Fig. 9. Error in force and torque between linearized and nonlinear models
when varying rotation along the y direction.

below 5% error in force, displacements in the z direction must 469

be bound to 10−4 m. This requirement is much more stringent 470

if the error threshold is 1%, decreasing the displacement bound 471

down to 10−5 m. Perturbations in the x and y translational dis- 472

placements may be as high as 1 m, or 10−3 m, yet still retaining 473

5% RMS error in force. 474

VI. CONCLUSION 475

The general, linearized state-space equations derived here al- 476

low the closed-form analytical characterization of a flux-pinned 477

interface, along with the state matrix needed to formulate lin- 478

ear control algorithms. The results are an important step toward 479

implementing six degree-of-freedom dynamic systems, such as 480

docking, formation flying, autonomous assembly of multiple 481

bodies, and noncontacting pointing platforms. 482

This model is expected to help characterize the passive dy- 483

namics of a flux-pinned system in all its degrees of freedom 484

to permit the formulation of control algorithms. The linearized 485

model accurately reflects the nonlinear dynamics within small 486

displacements. Understanding the sensitivity of spatial pertur- 487

bations informs the implementation of feedback control, for 488
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example, in choosing the proper sensor resolution and predicting489

the expected excursions of the flux-pinned interface dynamics.490

Although the linearized equations are consistent with the fun-491

damental physics, Kordyuk’s geometric mapping and Villani’s492

dipole interactions represent limitations that may come into play493

for systems with nonlinear excursions and for which the dipole494

assumptions break down. Future work lies in refining the basic495

nonlinear flux-pinning model and parameterizing the nonlinear-496

ities in the dynamics model.497
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Linearized Dynamics of General
Flux-Pinned Interfaces

1

2

Frances Zhu and Mason A. Peck3

Abstract—A flux-pinned interface offers a passively stable equi-4
librium that otherwise cannot occur between magnets because elec-5
tromagnetic fields are divergenceless. The contactless, compliant6
nature of flux pinning offers many benefits for close-proximity7
robotic maneuvers, such as rendezvous, docking, and actuation.8
This paper derives the six degree-of-freedom linear dynamics about9
an equilibrium for any magnet/superconductor configuration. Lin-10
earized dynamics are well suited to predicting close-proximity11
maneuvers, provide insights into the character of the dynamic sys-12
tem, and are essential for linear control synthesis. The equilibria13
and stability of a flux-pinned interface are found using Villani’s14
equations for magnetic dipoles. Kordyuk’s frozen-image model15
provides the nonlinear flux-pinning response to these magnetic16
forces and torques, all of which are then linearized. Comparing17
simulation results of the nonlinear and linear dynamics shows the18
extent of the linear model’s applicability. Nevertheless, these sim-19
ple models offer computational speed and physical intuition that a20
nonlinear model does not.21

Index Terms—Dynamics, linear systems, magnetoelectric22
effects, superconducting magnets.23

I. INTRODUCTION24

EARNSHAW’S theorem states that there is no stable sta-25

tionary equilibrium for point charges that are solely held26

together by electrostatic forces [1]. Because they are also diver-27

genceless, magnetic fields offer no stable equilibria except at28

the origin or at infinity. This is not the case for flux-pinned mag-29

nets, for which a stable equilibrium can exist for any number30

of magnets at arbitrary relative positions and orientations. Flux31

pinning a magnet to a superconductor creates an equilibrium,32

or minimum potential energy well, that stabilizes the magnet’s33

position and orientation.34

An external magnetic field excites current vortices within a35

superconductor, which is a material that carries current with-36

out resistance. Cooling a Type II superconductor to below its37

transition temperature in the presence of a magnetic field es-38

tablishes permanent current vortices, which persist as long as39

the superconductor’s temperature stays below this threshold.40

The flux-pinning effect influences the dynamics of kilogram-41

Manuscript received August 8, 2017; revised April 5, 2018; accepted May
30, 2018. This work was supported in part by the NASA Space Technology
Research Fellowship under Grant NNX15AP55H. This paper was recommended
by Associate Editor Philippe J. Masson. (Corresponding author: Frances Zhu.)
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neering, Cornell University, Ithaca, NY 14853 USA (e-mail:,fz55@cornell.edu;
mp336@cornell.edu).
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at http://ieeexplore.ieee.org.
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scale bodies out to about 10 cm of separation distance. The 42

energy in the magnetic field determines the range. 43

In early empirical studies of flux pinning, Williams noticed 44

potential curves that resemble a volcano, with a minimum at 45

the center of the disc and a maximum near the edge [2]. He 46

proposed a model consisting of a repulsive magnetic field source 47

(the mobile image) superimposed upon an attractive magnetic 48

field source (the frozen image). 49

There are two conventional methods to model the mag- 50

netization of the superconductor: Bean’s critical-state model 51

and Kordyuk’s frozen-image model [3], [4]. The critical-state 52

model is general but numerically intensive because it is based 53

on a finite-element analysis of interactions among—ideally— 54

infinitesimally small magnetization loops. The accuracy of 55

Bean’s model depends on the resolution of magnetization loops, 56

which cannot be feasibly solved in real time for problems of 57

practical interest. Kordyuk’s advanced frozen-image model rep- 58

resents the position and orientation of the two images within the 59

superconductor geometrically, an approach that yields drasti- 60

cally simpler and faster real-time representations for feedback- 61

control architectures. The frozen-image model omits the effects 62

from physical parameters such as temperature, material, and 63

geometry, but these may be accounted for in a modified frozen- 64

image model [5]. For simplicity, the following assumptions are 65

made. Critical current density is assumed to be infinite. For 66

familiar problems, this limitation has no practical effect. The 67

induced magnetic field is greater than the first critical magnetic 68

field—again, an issue that rarely arises in practical applications. 69

The temperature is low enough that scaling and hysteretic effects 70

are negligible, although Yang offered a method to incorporate 71

elastic hysteresis [6]. These assumptions, as well as the previous 72

ones, are readily accommodated in systems designed for ana- 73

lyzability. Kordyuk’s model and the magnetic moment dipole 74

model provide the foundation for many subsequent analytical 75

assessments of flux-pinned dynamics and are the basis for the 76

rest of this paper [7], [8]. 77

Kordyuk created an analytical model to explain the image 78

effects of flux pinning, known as the frozen-image model [4]. 79

Kordyuk’s geometric relation between magnet parameters and 80

image parameters is graphically depicted in–Fig. 2 and fur- 81

ther discussed in Section II. Other authors (Alqadi [9], Cansiz 82

[10], Suguira [11], etc.) have written primarily about finding 83

the potential fields of magnet/superconductor arrangements or 84

the equilibria of magnet/superconductor arrangements in three 85

or less degrees of freedom. This paper derives the most general 86

case of six degrees of freedom. 87

1051-8223 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Cryocooled superconductor with a pinned permanent magnet sus-
pended in gravity.

Q1

Fig. 2. Geometric relationship among the equilibrium, frozen image, mobile
image, superconductor and magnet [4].

A flux-pinned interface offers many benefits for robotics ap-88

plications, namely, passive stability, compliance, absence of89

mechanical contact, and low mass requirements. Flux-pinned90

systems can be actively manipulated to control the orientation91

and position of close-proximity vehicles while remaining con-92

tactless and compliant [12]. Traditional, linear control synthesis93

may be successful for such systems, but the inherently non-94

linear dynamics must be linearized to provide a suitable plant95

model. A linearized model also provides valuable insights into96

the system, such as stability, natural frequencies, and modes.97

This study focuses on a general, linear model for these reasons.98

II. MAGNETIC FIELD SOURCES99

The general expression for magnetic field strength at distance100

ρ from the field source is (1) [10]. m is the magnetic moment101

of the dipole of interest. From (1), the magnetic field strength102

decreases with distance cubed. The expression for magnetic103

field strength can be related to a flux-pinned mobile image, flux-104

pinned frozen image, electromagnet, or permanent magnet. The105

magnetic field is a function of two variables: m the magnetic106

moment dipole and ρ the distance from the field source. m is a107

parameter determined by the physical nature of the source. ρ can108

be defined or measured in the physical system. The expression109

for magnetic moment dipoles differs for each type magnetic110

field source.111

B (ρ) = μ0

4π |ρ|3 (3 (m · ρ̂) ρ̂ − m̂) . (1)

A. Physical Magnet 112

There are two types of physical magnetic field sources: per- 113

manent magnets and electromagnets. The magnetic moment 114

dipole of a permanent magnet is purely defined by physical 115

characteristics in (2). B0 is the manufacturer’s measurement of 116

the magnetic field at the surface of the magnet. d is the distance 117

from the center of dipole to the surface. m̂ p is the unit direction 118

of the magnetic moment dipole. The electromagnetic moment 119

dipole is represented by (3), where V (t) is the voltage potential of 120

the electromagnet, A is the area enclosed by the electromagnet’s 121

coil of wire, T is the number of turns of the electromagnet, and 122

R is the resistance of the electromagnet. Besides their physical 123

differences, they mathematically represent a physical magnetic 124

moment dipole m p. Fig. 3(a) graphically depicts the relationship 125

among variables. The two physical magnetic field sources differ 126

in the physical parameters that make up the magnetic moment 127

dipole expression. 128

m p = 2π B0d3

μ0
m̂ p (2)

mE = V AT

R
m̂E . (3)

129

B. Mobile/Diamagnetic Image 130

All superconductors display the Meissner effect, which is the 131

expulsion of magnetic flux. The magnetic source that creates 132

the Meissner effect may be represented as an image within 133

the superconductor that changes the polarity and magnitude to 134

always repel. That image, more specifically, follows the external 135

magnetic source and reorients to the moment dipole to mirror the 136

external magnetic source. The mobile image’s magnetic moment 137

dipole depends on the permanent magnet’s moment dipole and 138

the orientation of the superconductor, given by (4). mmag is 139

the vector from (2) or (3) that represents the physical magnet’s 140

moment dipole. m̂s is the unit direction normal to the surface of 141

the superconductor, illustrated in Fig. 3(b). The mobile image 142

moves when the permanent magnet moves, so the location of 143

the magnetic field from the mobile image is dynamic. rmag and 144

rm change in the expression for magnetic field and potential 145

energy, respectively. The magnetic field of the magnet’s mobile 146

image from Fig. 3(b) is given by (5), where ρm is the distance 147

from the mobile image to the permanent magnet that is given 148

by (6), where rm is the location of the mobile image and Os 149

is a point on the superconductor surface. The mobile image’s 150

magnetic moment dipole location and orientation are dependent 151

on the superconductor’s geometry. 152

mm = mmag − 2
(
m̂s · mmag

)
m̂s (4)

ρm = rmag − rm (5)

rm = rmag − 2
((

rmag − Os
) · m̂s

)
m̂s. (6)

C. Physical Magnet 153

The frozen image is an image specific to high temperature 154

or Type II superconductors. Instead of expelling all magnetic 155
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Fig. 3. Different types of magnetic field interactions. (a) Geometric representation of permanent magnet or electromagnet magnetic field source positions.
(b) Geometric representation of mobile image magnetic field source positions. (c) Geometric representation of frozen-image magnetic field source positions.
(d) Geometric representation of frozen image and mobile image overlaid at field-cooled position.

flux like Type I superconductors do, Type II superconductors156

field-cool a magnetic field during a transition phase and expel157

external fields that differ from the embedded field. This property158

allows for the stable presence of a field, in this application, in-159

finitesimal magnetic dipole. The frozen image is a consequence160

of the presence of an infinitesimal magnetic dipole a priori and161

a posteriori cryocooling, which embeds a field in the supercon-162

ductor that enforces restoration to this initial state. To counter163

the mobile image’s repulsion, the frozen image acts as an at-164

tractive infinitesimal magnetic dipole that stays in place and165

aligns magnetic moment dipoles with the field-cooled magnet.166

The frozen image’s magnetic moment dipole depends on the167

magnetic moment dipole field-cooled onto the superconductor168

and the orientation of the superconductor, as shown in (7) and169

geometrically in Fig. 3(c). Equations (8) and (9) are analogous170

to the frozen-image distance vectors. Like the mobile image,171

the frozen image is dependent on the superconductor’s geom-172

etry, but, unlike the mobile image, it does not move when the173

permanent magnet moves after field cooling.174

m f = 2 (m̂s · mFC ) m̂s − mFC (7)

ρ f = r FC − r f (8)

r f = r FC − 2 ((r FC − Os) · m̂s) m̂s. (9)

III. LINEARIZED DYNAMICS FOR A SINGLE FLUX-PINNED175

MAGNET AND SUPERCONDUCTOR INTERACTION176

The linearized dynamics for the simplest flux-pinned inter-177

face is derived. The dynamics are solely dependent on the mag-178

netic field source’s position and orientation, along with physical179

parameters specific to the system geometry. Each subsection180

describes the linearization process briefly before presenting the 181

final linearized equation set. 182

A. Linearizing General Magnetic Dipole Force and Torque 183

Equations 184

Villani derived the force of a magnetic dipole mb acting on 185

another magnetic dipole ma at distance ρ, given by (10) shown at 186

the bottom of this page, in which the scalars are brought out front 187

and all vectors are unit direction vectors [4]. The final linearized 188

force equation relates the first-order terms δFab to δr, δma, 189

and δmb, all vectors denoting deviation from equilibrium. To 190

linearize about ρe, mae, and mbe, a first-order Taylor expansion 191

of (10) was taken by replacing Fab = Fe + δFab, ρ = ρe + 192

δr , ma = mae + δma, and mb = mbe + δmb. The equilibrium 193

force is subtracted from both sides. The cross products and dot 194

products are replaced with cross and transpose operators (v× 195

to v× and v· to vT ), and then rearranged to isolate the first- 196

order terms. To transform the linear equation to matrix form, 197

notice that the quantities in front of δr, δma, and δmb are 3 198

× 3 matrices. The final matrix expression for linearized force 199

between two magnetic moment dipoles is given by (11) shown 200

at the bottom of this page. The moment/torque of a magnetic 201

dipole mb acting on another magnetic dipole ma at distance ρ 202

is given by (12), shown at the top of the next page, also derived 203

by Villani [5]. The same process of linearization is applied to 204

Villani’s moment equation to yield (13) shown at the top of the 205

next page. 206

B. Linearized Forces and Torques for Flux-Pinned Forces and 207

Torques 208

The total force from a flux-pinned interaction is the superpo- 209

sition of the mobile image force and frozen-image force. These 210

Fab = 3μ0mamb

4πρ4
((ρ̂ × m̂a) × m̂b + (ρ̂ × m̂b) × m̂a − 2ρ̂ (m̂a · m̂b) + 5ρ̂ ((ρ̂ × m̂a) · (ρ̂ × m̂b))) (10)

δFab = 3μ0

4π |ρe|5

⎡

⎢⎢
⎢⎢⎢⎢
⎣

m×
bem×

ae + m×
aem×

be − 2mT
aembe1− − 5

|ρe |2
(
ρe

(
ρ×

e mbe
)T

m×
ae − ρe

(
ρ×

e mae
)T

m×
be

)
+ · · ·

− 5
|ρe |2

((
ρ×

e mae
)×

mbe + (
ρ×

e mbe
)×

mae − 2
(
mT

aembe
)
ρe + 5

|ρe|2
((

ρ×
e mae

)T (
ρ×

e mbe
))

ρT
e

)

−m×
beρ

×
e + (

ρ×
e mbe

)× − 2ρemT
be + 5

|ρe |2 ρe
(
ρ×

e mbe
)T

ρ×
e

(ρemae)× − m×
aeρ

×
e − 2ρemT

ae + 5
|ρe |2 ρe

(
ρ×

e mae
)T

ρ×
e

⎤

⎥⎥
⎥⎥⎥⎥
⎦

T

⎡

⎢
⎣

δr

δma

δmb

⎤

⎥
⎦ (11)
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τ ab = μ0mamb

4πρ3
(3 (m̂a · ρ̂) (m̂b × ρ̂) + (m̂a × m̂b)) (12)

δτ ab = μ0

4π |ρe|3

⎡

⎢⎢
⎣

3
|ρe |2

(
mT

aeρem×
be + mT

beρem×
ae −

(
3

|ρe|2 mT
aeρem×

beρe + m×
aembe

)
ρT

e

)

3
|ρe |2 m×

beρeρ
T
e − m×

be

− 3
|ρe|2 m×

aeρeρ
T
e − m×

ae

⎤

⎥⎥
⎦

⎡

⎣
δr

δma

δmb

⎤

⎦ . (13)

images are magnetic field sources that impart linearized forces211

given by (11). The frozen-image force is found by substituting212

mae to me, the magnet’s equilibrium magnetic moment dipole,213

and mbe to m f e, the frozen image’s equilibrium magnetic mo-214

ment dipole, into (11). The frozen image will never change215

in orientation; thus, δm f = 0. The linearized force from the216

frozen image is given by (14) shown at the bottom of this page.217

The mobile image force, given by (16), is similarly obtained by218

substituting mae to me, the magnet’s equilibrium magnetic mo-219

ment dipole, and mbe to mme, the mobile image’s equilibrium220

magnetic moment dipole, into (11). From Kordyuk’s geomet-221

ric interpretation of the frozen-image model, the mobile image222

reorients itself like a mirror image across the superconductors223

surface, where m̂s is the unit normal to the superconductor’s224

surface given by (4). A direct relation from m to mm is given by225

(15) shown at the bottom of this page. This relationship reduces226

the number of independent state variables. The mobile image227

force equation depends only on the magnet’s orientation and 228

position, given by (16) shown at the bottom of this page. The 229

forces from the mobile and frozen images are additive and may 230

be combined to a final equation for force on the system, given by 231

(17) shown at the bottom of this page. The total force is depen- 232

dent on the physical magnet’s position and orientation, which 233

constitutes the translational dynamic state of the flux-pinned 234

interaction. 235

The total torque from a flux-pinned interface is the sum of the 236

combined frozen and mobile image effects. The frozen-image 237

torque is obtained by substituting mae to me, the magnet’s equi- 238

librium magnetic moment dipole, and mbe to m f e, the frozen 239

image’s equilibrium magnetic moment dipole. The orientation 240

of the frozen image does not change, so the state δm f and the 241

corresponding coefficient are excluded, given by (18) shown at 242

the top of the next page. The same process is applied to the 243

mobile image. Substituting (15) into our previous equation, we 244

δF f = 3μ0

4π |ρe|5

⎡

⎢⎢
⎣

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe |2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e

⎤

⎥⎥
⎦

T

[
δr
δm

]
(14)

mm =
(

1− − 2m̂s m̂T
s

)
m (15)

δFm = 3μ0

4π |ρe|5

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe|2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe |2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe |2 ρe
(
ρ×

e mme
)T

ρ×
e + · · ·

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

T

[
δr

δm

]

(16)

δFtot = 3μ0

4π |ρe|5

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe |2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+ · · ·

− 5
|ρe|2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)
+ · · ·

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe |2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)
+ · · ·

− 5
|ρe |2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e + · · ·

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe|2 ρe
(
ρ×

e mme
)T

ρ×
e + · · ·

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

T

[
δr

δm

]

.

(17)
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δτ f = μ0

4π |ρe|3

⎡

⎣
3

|ρe|2
(

mT
e ρem×

f e + mT
f eρem×

e −
(

3
|ρe |2 mT

e ρem×
f eρe + m×

e m f e

)
ρT

e

)

3
|ρe|2 m×

f eρeρ
T
e − m×

f e

⎤

⎦

T [
δr

δm

]

(18)

δτ m = μ0

4π |ρe|3

⎡

⎢
⎣

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe |2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

3
|ρe |2 m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe |2 m×
e ρeρ

T
e + m×

e

)

⎤

⎥
⎦

T [
δr

δm

]

(19)

δτ tot = μ0

4π |ρe|3

⎡

⎢⎢⎢⎢
⎣

3
|ρe|2

(
mT

e ρem×
f e + mT

f eρem×
e −

(
3

|ρe |2 mT
e ρem×

f eρe + m×
e m f e

)
ρT

e

)
+ · · ·

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe|2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

3
|ρe|2 m×

f eρeρ
T
e − m×

f e + 3
|ρe|2 m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe |2 m×
e ρeρ

T
e + m×

e

)

⎤

⎥⎥⎥⎥
⎦

T

[
δr

δm

]

. (20)

reduce the number of states needed to calculate δmm given by245

(19) shown at the top of the next page. The total torque on the246

magnet is the sum of the torque from the mobile and frozen247

images, given by (20) shown at the top of this page. The total248

torque is solely dependent on the physical magnet’s position249

and orientation, which constitutes the rotational dynamic state250

of the flux-pinned interaction.251

C. Governing Equations252

For the case of a single magnet and single superconductor, the253

magnet’s dynamics are due to the forces and torques from the254

frozen and mobile images. In this single magnet case, there are255

two magnet moment dipoles that are exerting forces and torques256

on the magnet. The force and torque equations are given by (21)257

and (22), respectively. The translational dynamics of the flux-258

pinned magnet is a result of the force balance equation (23). The259

linear momentum balance, given by (24), is put into matrix form260

to be easily inserted into a state-space form later. Euler’s rigid261

body equation (25) propagates attitude dynamics. The linearized262

version of the rigid body equations is given by (26). Equation263

(27) simplifies to no longer include the gyroscopic dynamics264

because the magnitude of angular velocity at equilibrium is 0.265

The orientation of the magnet may be represented by an Euler266

axis-angle (28), and alternatively by a quaternion (29). In this267

case, the Euler axis is the magnetic moment dipole unit vector,268

and the angle may be chosen to be π because the magnet is ax-269

isymmetric. Choosing π retains most of the information about270

the magnetic moment dipole-pointing vector. Upon inspection,271

the fourth component of the quaternion about equilibrium will272

always be zero; thus, no information is lost if the quaternion state273

vector is shortened to just the vector components qv . To prop-274

agate the attitude dynamics, there is a linear relation between275

the quaternion and angular velocity that yields the quaternion276

derivative, given by (30). This set of equations fully defines the277

linearized dynamics of a rigid body.278

∑
F = F f + Fm (21)

∑
τ = τ f + τ m (22)

∑
F = M r̈ (23)

δ r̈ = M−1δFtot (24)

279

τ = I · ω̇ + ω × (I · ω) (25)

δω̇ = I −1
(
ω×

e I − (Iωe)×
)
δω + I −1τ (26)

δω̇ = I −1δτ (27)

δm = θδm̂ (28)

δq =
[

δm̂ sin
(

θ
2

)

cos
(

θ
2

)

]

(29)

δq̇v = 1

2
qve × δω. (30)

D. State-Space Model 280

The single magnet flux-pinned system dynamics may be rep- 281

resented with a first-order system state-space matrix, given by 282

(31). The state matrix has the form given in (32). Each entry in 283

the state matrix is a block matrix of size corresponding to the 284

state and resultant, where the following ai j values are given by 285

(34)–(40). The matrix entries ai j are block matrices of size 3 × 286

3 that are generated from the linearized forces and torques from 287

(17) and (20), respectively. Eq. (37)."(40) shown at the bottom 288

of the next page. 289

⎡

⎢⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥⎥
⎦

= A

⎡

⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥
⎦

(31)

⎡

⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

0 1− 0 0

a21 0 a23 0

0 0 0 1
2 q×

ve

a41 0 a43 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥⎥
⎦

(32)

δ ṙ = δ ṙ (33)

δq̇v = 1

2
qve × δω (34)

δ r̈ = a21δr + a23δqv (35)

δω̇ = a41δr + a43δqv (36)
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Fig. 4. Frozen and mobile images from magnet j acting on magnet i across
superconductor k.

IV. LINEARIZED RIGID BODY DYNAMICS FOR AN ARBITRARY290

NUMBER OF MAGNETS AND SUPERCONDUCTORS291

For a system of M rigidly constrained magnets on a rigid292

body with each magnet flux pinned to N fixed superconductors,293

each superconductor will store M frozen images. The system of294

permanent magnets will feel the effect of each Nth supercon-295

ductor’s embedded images, in which each superconductor holds296

M frozen images, totaling M × N frozen images. An equal num-297

ber of mobile images pair with the frozen image counterparts,298

yielding a total 2 × M × N images that generate forces and299

torques. Assuming the magnets are rigidly mounted together,300

the summation of the forces on each magnet yields the total301

force on the body at the magnet bodies’ center of mass.302

A single flux-pinned interaction happens between the images303

of magnets i and j, in which magnet j produces frozen and mo-304

bile images on superconductor k, given by (41) and shown in305

Fig. 4. Magnet j produces frozen and mobile images on multiple306

superconductors, which all affect magnet i. The total contribu- 307

tion of magnet j’s images onto magnet i is the summation of 308

all individual flux-pinned interactions between magnets i and 309

j across all superconductors, given by (42). The total force on 310

magnet i from all magnet images is the sum of all magnet j 311

influences across all superconductors, given by (43). The total 312

force on a rigid body is the summation of total force on each 313

magnet I, given by (44). 314

The torque is similar to the force summation with an extra 315

term attributed to the force with a moment arm on magnet i, 316

given by (45). The total torque on a rigid body is analogous to 317

the total force equation but also includes a torque from each 318

force displaced from the center of mass, given by (46). These 319

two summation equations can be rearranged into a linear set 320

of equations using the same linearization techniques from the 321

single magnet single superconductor case. 322

Fi j k = Ffrozen + Fmobile (41)

Fi j =
M∑

k=1

(Ffrozen + Fmobile)k (42)

Fi =
N∑

j=1

M∑

k=1

((Ffrozen + Fmobile)k) j (43)

FC O M =
N∑

i=1

N∑

j=1

M∑

k=1

(
((Ffrozen + Fmobile)k) j

)
i

(44)

τ i =
N∑

j=1

M∑

k=1

((τ frozen + τmobile)k) j + ρ i × Fi (45)

τ C O M =
N∑

i=1

N∑

j=1

M∑

k=1

(
((τ frozen + τmobile)k) j

)
i
+

M∑

i=1

ρ i × Fi .

(46)

a21 = M−1 3μ0

4π |ρe|5

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

m×
f em×

e + m×
e m×

f e − 2mT
e m f e1− − 5

|ρe|2
(
ρe

(
ρ×

e m f e
)T

m×
e − ρe

(
ρ×

e me
)T

m×
f e

)
+

− 5
|ρe |2

((
ρ×

e me
)×

m f e + (
ρ×

e m f e
)×

me − 2
(
mT

e m f e
)
ρe + 5

|ρe |2
((

ρ×
e me

)T (
ρ×

e m f e
))

ρT
e

)
+

2m̂sm̂T
s

(
m×

mem×
e + m×

e m×
me − 2mT

e mme1− − 5
|ρe|2

(
ρe

(
ρ×

e mme
)T

m×
e − ρe

(
ρ×

e me
)T

m×
me

)

− 5
|ρe|2

((
ρ×

e me
)×

mme + (
ρ×

e mme
)×

me − 2
(
mT

e mme
)
ρe + 5

|ρe|2
((

ρ×
e me

)T (
ρ×

e mme
))

ρT
e

) )

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(37)

a23 = M−1 3μ0 |me|
4π |ρe|5

⎛

⎜⎜⎜⎜
⎝

−m×
f eρ

×
e + (

ρ×
e m f e

)× − 2ρemT
f e + 5

|ρe|2 ρe
(
ρ×

e m f e
)T

ρ×
e +

−m×
meρ

×
e + (

ρ×
e mme

)× − 2ρemT
me + 5

|ρe |2 ρe
(
ρ×

e mme
)T

ρ×
e +

(
1− − 2m̂sm̂T

s

) (
(ρeme)× − m×

e ρ×
e − 2ρemT

e + 5
|ρe|2 ρe

(
ρ×

e me
)T

ρ×
e

)

⎞

⎟⎟⎟⎟
⎠

(38)

a41 = I −1 μ0

4π |ρe|3

⎛

⎜
⎝

3
|ρe|2

(
mT

e ρem×
f e + mT

f eρem×
e −

(
3

|ρe |2 mT
e ρem×

f eρe + m×
e m f e

)
ρT

e

)
+

2m̂sm̂T
s

(
3

|ρe |2
(

mT
e ρem×

me + mT
meρem×

e −
(

3
|ρe|2 mT

e ρem×
meρe + m×

e mme

)
ρT

e

))

⎞

⎟
⎠ (39)

a43 = I −1 μ0 |me|
4π |ρe|3

(
3

|ρe|2
m×

f eρeρ
T
e − m×

f e + 3

|ρe|2
m×

meρeρ
T
e − m×

me +
(

2m̂sm̂T
s − 1−

) (
3

|ρe|2
m×

e ρeρ
T
e + m×

e

))
. (40)
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The state space of the single magnet single superconductor323

case has 12 state variables: translational position, translational324

velocity, quaternion vector, and angular velocity of the magnet.325

For the general case of an M magnet N superconductor inter-326

action, the states will include those 12 state variables for each327

magnet on the rigid body, i.e., 12M total states. The most general328

plant, given in (47), is a simplification of the multiple magnet329

and multiple superconductor plant to a matrix of block matri-330

ces, where δzi = [δr iδ ṙ iδqviδωi ]T and Ai,j is the linearized331

dynamics of magnet i due to magnet j’s images.332

⎡

⎢
⎢
⎣

δ ż1

...

δ żm

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

A1,1 · · · A1,M

...
. . .

...

AM,1 · · · AM,M

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δz1

...

δzm

⎤

⎥
⎥
⎦ (47)

Four Jacobians provide the basis for the partitions in the Ai, j333

matrix of (47): force and torque as a function of position and334

orientation. The single magnet and single superconductor plant335

is derived using this general form Ai, j , given by (48). The mag-336

net images affecting the dynamics can be from any magnet’s337

images embedded in any superconductor. Every interaction is338

pairwise and all block matrices are populated. The larger sys-339

tem variables are analogous to the single magnet and single340

superconductor variables in (33)–(40). The velocity of magnet341

i is only the velocity of magnet j, when i = j . The quaternion342

derivative of magnet i is only propagated when magnet j = i .343

Any magnetic moment dipole from an image is established from344

magnet j about superconductor k. Any magnetic moment dipole345

from a magnet is established from magnet i. The distance vectors346

are calculated from magnet j’s images about superconductor k to347

magnet i. These equations constitute the entries of the linearized348

state matrix, forming the basis of a linearized flux-pinning dy-349

namics model for magnet i from specific magnet j’s images from350

superconductor k. a21,i j , a23,i j , a41,i j , and a43,i j are expressions351

with summation over all N superconductors.352

⎡

⎢⎢⎢⎢
⎣

δ ṙ i

δ r̈ i

δq̇vi

δω̇i

⎤

⎥⎥⎥⎥
⎦

= Ai, j

⎡

⎢⎢⎢⎢
⎣

δr j

δ ṙ j

δqv j

δω j

⎤

⎥⎥⎥⎥
⎦

(48)

where353

Ai, j =

⎡

⎢⎢⎢⎢
⎣

0 a12,i j 0 0

a21,i j 0 a23,i j 0

0 0 0 a34,i j

a41,i j 0 a43,i j 0

⎤

⎥⎥⎥⎥
⎦

.

The output states of a rigid body about the center of mass are354

translational position, translational velocity, attitude, and angu-355

lar velocity of the magnet. For the M magnet N superconductor356

case, the input state includes the position, velocity, attitude, and357

angular velocity of every magnet j, where A j represents the358

contribution to body dynamics from magnet j’s state, given by359

(49). a21, j , a23, j , a41, j , and a43, j are expressions with summa-360

tion over all N superconductors and M magnets. An analogous361

operation would be to sum each Ai, j block matrix along each 362

column or ith index, resulting in A j . These 3 × 3 block matrices 363

form the basis of a linearized flux-pinning dynamics model for 364

a rigid body with all M magnets. 365

⎡

⎢⎢⎢⎢
⎣

δ ṙC O M

δ r̈C O M

δq̇vC O M

δω̇C O M

⎤

⎥⎥⎥⎥
⎦

= [
A1 . . . AM

]

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

δr1

δ ṙ1

δqv1

δω1

...

δrm

δ ṙm

δqvM

δωm

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

(49)

where 366

Ai, j =

⎡

⎢⎢⎢⎢
⎣

0 a12,i j 0 0

a21,i j 0 a23,i j 0

0 0 0 a34,i j

a41,i j 0 a43,i j 0

⎤

⎥⎥⎥⎥
⎦

.

V. SENSITIVITY AND COMPARISON OF SINGLE MAGNET AND 367

SINGLE SUPERCONDUCTOR DYNAMICS 368

To validate the linearized dynamics and investigate the dy- 369

namic sensitivity of each state, a simulation with the full nonlin- 370

ear dynamic equations is compared to the linearized state space. 371

The fully nonlinear simulation also offers a second method 372

to validate the linearized state space, using a common soft- 373

ware package. Dynamic characteristics of the linearized state 374

space are discussed, followed by a comparison of the nonlinear 375

dynamic time histories and the derived linearized state-space- 376

propagated dynamics to generate the RMS error. Finally, this 377

paper studies the sensitivity of force and torque by indepen- 378

dently varying each state. 379

A. Defining System Parameters 380

The specific magnet chosen is that of strength 0.8815 T and 381

diameter 0.75 in. If z represents the vertical height in the Carte- 382

sian coordinate space, the magnet is field-cooled 1 cm above the 383

superconductor. Both the superconductor and magnet are point- 384

ing directly upward. The position of the permanent magnet from 385

an arbitrary origin on the superconductor surface is represented 386

by r1. The magnetic moment dipole of the permanent magnet 387

contains a field strength and a unit direction, represented by 388

m1. The orientation of the superconductor is the surface normal 389

unit vector, given by m̂s. The mass matrix is the mass of the 390

permanent magnet, multiplied by an identity matrix, given by 391

M. R is the radius of the spherical magnetic moment dipole. I is 392

the inertia tensor of the spherical magnet. 393

From these physical parameters, the image parameters are 394

found. r f is the position of the frozen image. rm is the position 395

of the mobile image. ρe is the position vector from the images 396
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TABLE I
SINGLE MAGNET AND SUPERCONDUCTOR CASE STUDY PARAMETERS

to the permanent magnet when in equilibrium, which is also the397

field-cooled position. The equilibrium magnetic moment dipole398

is equivalent to the field-cooled orientation of the permanent399

magnet me. The frozen-image magnetic moment dipole m f e400

is of the same orientation as the permanent magnet orienta-401

tion when field-cooled. The mobile image magnetic moment402

dipole mme is the mirrored orientation as the permanent mag-403

net orientation when field-cooled. Table I presents a complete404

list of system parameters. All code is online and available at405

github.com/frankiezoo/SMSS Linear Dynamics.git.406

B. Linearizing a Nonlinear Simulation and Deriving407

Linearized Matrix408

After building a nonlinear dynamics model of a single magnet409

and single superconductor, the model is linearized with the help410

of the Linear Analysis Toolbox from MathWorks Simulink. The411

input perturbation states are the quaternion and the position of412

the permanent magnet. The output measurement is the force and413

torque. The state space produced from Simulink’s linearization414

produces (50). The single magnet and single superconductor415

plant from (32) is modified to include the four Jacobians from416

Simulink’s linearization process from (49), given by (51). The417

state matrix generated from the simulation is equivalent within418

machine precision to the linearized state matrix derived in the419

preceding sections.420

J =
[

∂ F
∂ r

∂ F
∂q

∂τ
∂ r

∂τ
∂q

]

(50)

⎡

⎢⎢⎢⎢
⎣

δ ṙ

δ r̈

δq̇v

δω̇

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

0 1− 0 0

M−1 ∂ F
∂ r 0 M−1 |me| ∂ F

∂q 0

0 0 0 1
2 q×

ve

I −1 ∂τ
∂ r 0 I −1 |me| ∂τ

∂q 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

δr

δ ṙ

δqv

δω

⎤

⎥⎥⎥⎥
⎦

.

(51)

C. Modal Analysis of Linearized Flux-Pinned Model421

Modal analysis of a dynamic system reveals stability and fre-422

quency information. The eigenvalues and eigenvectors are found423

with the linearized state-space matrix. The plant derived in Sec-424

tion V-B has the following eigenpairs. The flux-pinned system425

is marginally stable because all eigenvalues have a 0 real com-426

ponent. The numerical values associated with each eigenpair427

TABLE II
SINGLE MAGNET AND SUPERCONDUCTOR EIGENPAIRS

manifest different properties in the physical system, as shown 428

in Table II. 429

The first ten eigenvalues of the flux-pinned plant are all imagi- 430

nary, which represent the spring-like nature of flux-pinned inter- 431

faces. Due to the axial symmetry of the magnet, the eigenvalues 432

representing the x and y dynamics come in quadruplets. The 433

eigenvectors with imaginary values must be paired with the 434

conjugate eigenvector to manifest real physical dynamics. In- 435

tuitively, flux-pinned interfaces have stiffer translational joints 436

than rotational joints. The modal analysis reveals the same con- 437

clusion, where the z translation has the highest stiffness, the 438

x and y translations are also relatively high, and the x and y 439

rotations have the lowest stiffness. 440

The first four modes show a relation between the rotation 441

and translation about the x and y axes. The rotation is the main Q2442

modal shape, but contributes to the translation. This stiffness is 443

rather high. The next four modes, 5–8, show a relation between 444

the rotation about the x and y axes. The rotation about one axis 445

is the main modal shape, but the rotation about the other axis is 446

also a significant modal. This stiffness is the lowest of all modes. 447

Modes 9 and 10 strictly reflect translation in the z direction. It 448

has the highest stiffness of all the modes. The last modes have 449

0 eigenvalues because the dynamics of the system do not resist 450

to any perturbation of these states. Any perturbation in q3, or 451

the magnetic strength of the magnet, results in translation in the 452

z direction. Any perturbation in the rotation about the z-axis q3 453

results in rotation about the z-axis until another perturbation or 454

energy dissipation is introduced. 455

D. Sensitivity of Linearized Dynamics due to State Variation 456

Although the linearized plant is nearly exact to machine pre- 457

cision error at equilibrium, the linear plant approximates non- 458

linear dynamics less accurately the further the system deviates 459

from equilibrium. Figs. 5–9 show sensitivity plots varying state 460

variables and correlating error in force and torque calculations 461

between the linearized equations and nonlinear equations. The 462

translation and rotation in the x and y directions are the same due 463
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Fig. 5. Error in force and torque between linearized and nonlinear models
when varying displacement along the x direction.

Fig. 6. Error in force and torque between linearized and nonlinear models
when varying displacement along the y direction.

Fig. 7. Error in force and torque between linearized and nonlinear models
when varying displacement along the z direction.

to symmetry, as shown in Figs. 5, 6, 8, and 9. There is no rotation464

in the z direction because the magnet is axially symmetric. The465

most sensitive state is the translational displacement in the z di-466

rection, as shown in Fig. 7. The equilibrium separation distance467

from the superconductor surface is 1 cm, or 10−2 m. To retain468

Fig. 8. Error in force and torque between linearized and nonlinear models
when varying rotation along the x direction.

Fig. 9. Error in force and torque between linearized and nonlinear models
when varying rotation along the y direction.

below 5% error in force, displacements in the z direction must 469

be bound to 10−4 m. This requirement is much more stringent 470

if the error threshold is 1%, decreasing the displacement bound 471

down to 10−5 m. Perturbations in the x and y translational dis- 472

placements may be as high as 1 m, or 10−3 m, yet still retaining 473

5% RMS error in force. 474

VI. CONCLUSION 475

The general, linearized state-space equations derived here al- 476

low the closed-form analytical characterization of a flux-pinned 477

interface, along with the state matrix needed to formulate lin- 478

ear control algorithms. The results are an important step toward 479

implementing six degree-of-freedom dynamic systems, such as 480

docking, formation flying, autonomous assembly of multiple 481

bodies, and noncontacting pointing platforms. 482

This model is expected to help characterize the passive dy- 483

namics of a flux-pinned system in all its degrees of freedom 484

to permit the formulation of control algorithms. The linearized 485

model accurately reflects the nonlinear dynamics within small 486

displacements. Understanding the sensitivity of spatial pertur- 487

bations informs the implementation of feedback control, for 488
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example, in choosing the proper sensor resolution and predicting489

the expected excursions of the flux-pinned interface dynamics.490

Although the linearized equations are consistent with the fun-491

damental physics, Kordyuk’s geometric mapping and Villani’s492

dipole interactions represent limitations that may come into play493

for systems with nonlinear excursions and for which the dipole494

assumptions break down. Future work lies in refining the basic495

nonlinear flux-pinning model and parameterizing the nonlinear-496

ities in the dynamics model.497
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