

Abstract— Exploring and traversing extreme terrain with

surface robots is difficult, but highly desirable for many

applications, including exploration of planetary surfaces, search

and rescue, among others. For these applications, to ensure the

robot can predictably locomote, the interaction between the

terrain and vehicle, terramechanics, must be incorporated into

the model of the robot’s locomotion. Modeling terramechanic

effects is difficult and may be impossible in situations where the

terrain is not known a priori. For these reasons, learning a

terramechanics model online is desirable to increase the

predictability of the robot’s motion. A problem with previous

implementations of learning algorithms is that the

terramechanics model and corresponding generated control

policies are not easily interpretable or extensible. If the models

were of interpretable form, designers could use the learned

models to inform vehicle and/or control design changes to refine

the robot architecture for future applications. This paper

explores a new method for learning a terramechanics model and

a control policy using a model-based genetic algorithm. The

proposed method yields an interpretable model, which can be

analyzed using preexisting analysis methods. The paper provides

simulation results that show for a practical application, the

genetic algorithm performance is approximately equal to the

performance of a state-of-the-art neural network approach,

which does not provide an easily interpretable model.

I. INTRODUCTION

Exploring environments with extreme terrain is difficult
for robotic systems. However, for many applications, such as
search and rescue missions and planetary exploration,
effectively exploring extreme terrain is crucial. One aspect that
complicates exploration of extreme terrain is that the dynamics
interaction between the robot and terrain, the terramechanics,
are often not known accurately a priori. When traversing
extreme terrain, not accurately modeling the terramechanics
inhibits the capability of robotic system to predictably
locomote. As the terrain becomes more extreme or as the
robot’s motion becomes more agile, the adverse effect of
poorly modeled terramechanics is even more significant
because difficult-to-model nonlinearities and discontinuities
from the environment’s forces affect the body more
significantly. Thus, to traverse extreme terrain effectively and
predictability, the terramechanic effects must be incorporated
into the control system of the robot. To incorporate
terramechanic effects into the control system when the
terramechanics are not known a priori, the terramechanics
must be learned online.

Many methods have been used in past research to develop
terramechanics models online. A promising method is to use
reinforcement learning to efficiently learn a general
relationship between the dynamics of the body and the
environment, which includes the terramechanic effects.
Learning a black box model using neural networks (NNs) has
been shown to increase the ability of the robot to traverse an
unknown environment effectively, but is difficult to interpret
by designers [1], [2], [3], [4], [5]. For many practical
applications, users need transparency to better understand and
refine robotic systems. For example, if the learned dynamic
interaction between the robot and environment yields a
reduced proportional relationship between expected
acceleration and wheel speed, viscous drag can be identified.
With a learned dynamic relationship, scientists may induce
physical traits of the environment, which contributes two-fold
to the planetary science field. If the learned controller is in
standard nonlinear control form, the model can be analyzed
during or after operation using standard analysis techniques,
informing control design and/or vehicle design improvements
for future missions.

In this paper, we propose a control system that learns an
interpretable model of the terramechanics online and computes
an optimal controller that enables accurate trajectory tracking.
Specifically, this paper proposes a genetic learning algorithm
(GA), which learns a model of the terramechanics along with
an optimal controller in standard nonlinear control form.

In simulation, the controller is implemented on a vehicle
with Ackerman steering, enabling the vehicle to accurately
track a trajectory through an environment with unknown
terramechanics. The simulation results show that the proposed
control, using a genetic algorithm, enables the vehicle to track
a trajectory with approximately the same performance as a
state-of-the-art NN, while also offering an interpretable
terramechanics model stemming from fundamental physics.

II. BACKGROUND

 Modeling terramechanics is a large and active field of

study. Past research has explored how to model motion

through extreme terrains like sand, mud, ice, and how to

incorporate terramechanics to create controllers that track

trajectories effectively [6], [7], [8]. However, these methods

assume that the terramechanics are known a priori, which as

discussed before, is not always the case, especially for

applications of space exploration. Due to the inaccessibility

Frances Zhu
Cornell University

452 Upson Hall
Ithaca, NY 14853
fz55@cornell.edu

D. Sawyer Elliott
Cornell University

452 Upson Hall
Ithaca, NY 14853

dse44@cornell.edu

ZhiDi Yang

Cornell University

Ithaca, NY 14853

zy337@cornell.edu

Haoyuan Zheng

Cornell University

Ithaca, NY 14853

hz463@cornell.edu

Learned and Controlled Autonomous Robotic Exploration in an

Extreme, Unknown Environment

of space and technological immaturity of reinforcement

learning algorithms, previous work draws from the robotics

community that focus on predominantly ground experiments.
 For cases where the terramechanics are not known

accurately a priori, methods for learning the terramechanics
and controls have been proposed previously. For example,
unsupervised learning has been used to classify the sliding
events of discrete rovers, which enables more accurate
tracking of trajectories [9]. Reinforcement learning with neural
networks has also been applied to learning terramechanics
models and controllers for autonomous robots, including
drifting, walking on extreme terrain, traversing over obstacles,
among others [1], [2], [3], [4], [5]. However, none of these
methods output an easily interpretable model of the
terramechanics or controller, which makes analysis of the
resulting model difficult.

Genetic algorithms have been used to effectively locomote
robots in a variety of environments both aquatic and terrestrial
[10], [11]. This previous work focuses on the morphology of
the robot that best achieves locomotion, not learning a
dynamics model. To address system identification, another
divergent line of research learns a symbolic expression of a
dynamics model with control input that most disagrees with
candidate physical models in a controlled environment [12],
[13]. Implementing control input with the most disagreement
risks of immobilization for an extraplanetary rover operating
outside the confines of a controlled laboratory environment.
Aerospace applications desire robustness in autonomous
operations, which involve guarantees and predictive
confidence.

III. CONTROL DESIGN

 To enable exploration of extreme terrain and learn an

interpretable model, a two-part controller is proposed. The

first part of the controller is a genetic algorithm, which learns

a dynamic model, including terramechanic effects, and a

controller in the form of an adaptive, linear gain matrix. The

second part of the controller is a baseline controller, which

uses the commonly employed pure pursuit method, to roughly

track the trajectory such that the learning controller can gather

enough data to learn a dynamics model and a control policy.

The baseline controller could be removed if the learning

algorithm was trained using a dynamic simulation. However,

the training is only as accurate as the modeled system

structure. Thus, to accurately train the learning algorithm, an

accurate model of the system would need to be developed,

which is difficult and potentially impossible for unknown

terrains. The dynamic model’s static structure offers

limitations in behavior that could offer safety in the form of

guarantees.

A. Reinforcement Learner Specification & Design

The proposed learning method uses a genetic algorithm

evolving a multivariable, nonlinear model approximation. To

achieve efficient computation and to ensure the structure is

interpretable, the genetic algorithm assumes a static model

structure. The parameters in the structure are evolved, or

estimated, to provide a candidate physics model and create a

control policy.

B. Implementation

Many methods exist for implementing genetic algorithms.

A basic genetic algorithm includes population initialization,

fitness evaluation, reproduction, crossover, and mutation

[14]. The important characteristics of a genetic algorithm are

chromosome specification, evolution parameters, and fitness

functions. The chosen method for the proposed controller is

discussed below.

Two populations describe candidates for the dynamic

model parameters and optimal control policy parameters.

Parameters are analogously called chromosomes in the

context of genetic algorithms. For unknown terramechanics,

length of the chromosome for the dynamic parameters is

determined by the complexity of the chosen terramechanics

model, given in Eq. (1). The dynamics model needs a dynamic

parameter chromosome string, 𝜃𝑑, defined by a number 𝑚𝑑

parameters in which each component is 𝑝1 to 𝑝𝑚𝑑
. These

parameters represent necessary coefficients in the dynamics

model expression, like scalars and biases, capturing a number

of physical effects, like static or sliding friction. For the

optimal control population, the chromosome length is

dependent on the complexity of the chosen control policy.

The control policy needs a control parameter chromosome

string, 𝜃𝐾, defined by a number 𝑛𝑑 parameters in which each

component is 𝑘1 to 𝑘𝑛𝑑
 , given in Eq. (2). The components

resemble gain matrix values but reshaped into vector form,

instead of the original matrix dimension. Each population

evolves, guided by user-defined fitness metrics.

 𝜃𝑑 = [𝑝1 … 𝑝𝑚𝑑
] (1)

 𝜃𝐾 = [𝑘1 … 𝑘𝑛𝑑
] (2)

The two metrics for fitness evaluation of each population

are prediction error 𝑄 and tracking error 𝐶. The prediction

error is the squared difference between measured and

predicted states. The predication error is dotted with a weight

vector 𝑤𝑠, shown in Eq. (4). Given the measured state of the

𝑚𝑡ℎ previous timestep 𝑠𝑘−𝑚 and the current timestep 𝑠𝑘, the

prediction error is the error between the current measurement

𝑠𝑘 and the propagated state from the previous measurement

𝑠̂𝑘. To propagate the vehicle’s next dynamic states, each

population member’s dynamic parameters 𝜃𝑑,𝑖 and the

optimal actions taken since 𝑘 − 𝑚 timesteps ago 𝑎𝑘−𝑚
∗ , are

injected into the prescribed dynamics model including

terramechanics 𝑓 (∙),given in Eq. (3) and visually depicted in

Figure 1. The fittest dynamic parameters are those that

accurately reflect the physical system. 𝑤𝑠 can be modified

depending on what portions of the predicated state the

designer is more concerned about predicting accurately.

 𝑠̂𝑘,𝑖 = 𝑓 (𝜃𝑑,𝑖 , 𝑠𝑘−𝑚, 𝑎𝑘−𝑚
∗) (3)

 𝑄𝑖 = 𝑤𝑠 ∙ |(𝑠𝑘 − 𝑠̂𝑘,𝑖)|
2
 (4)

Figure 1: Propagation of vehicle state using optimal

actions 𝒂𝒌−𝒎
∗ and two population member’s dynamic

parameters 𝛉𝐝,𝐢 and 𝛉𝐝,𝐣

Figure 2: Propagation of vehicle state using optimal

dynamic parameters 𝜽𝒅
∗ and two population member’s

control parameters 𝐚𝐤+𝐧,𝐢 and 𝐚𝐤+𝐧,𝐣

Tracking error is the sum of error between the next to 𝑛

projected trajectory waypoints and velocities to the projected

state 𝑠𝑘+𝑛
′ , propagating a simulation with the optimal dynamic

parameters 𝜃𝑑
∗ , the prescribed dynamics model including

terramechanics 𝑓 (∙), and candidate control actions 𝑎𝑘+𝑛,𝑖,

given in Eq. (5) and visually depicted in Figure 2. The

selected control policy 𝑔(∙) generates candidate control

actions from the state 𝑠𝑘, a reference state 𝑟𝑘, and the

candidate control parameters 𝜃𝐾,𝑖 evolving in the genetic

algorithm, given in Eq. (6). The final control fitness function

is a weighted sum of squared error between the reference and

projected states and squared weighted penalty of gain values,

shown in Eq. (7). The squared weighted penalty of gain values

is included to ensure the gains do not become so large that the

system will become unstable. The fittest control parameters

drive the system to the desired trajectory and velocity. The

two populations are sorted from the most fitt members to the

least fit members. From these two ranked populations, the

next generation of each population is created using

reproduction, crossover, and mutation.

 𝑠𝑘+𝑛,𝑖
′ = 𝑓 (𝜃𝑑

∗ , 𝑠𝑘 , 𝑎𝑘+𝑛,𝑖) (5)

 𝑎𝑘+𝑛,𝑖 = 𝑔 (𝑟𝑘 , 𝑠𝑘 , 𝜃𝐾,𝑖) (6)

 𝐶𝑖 = 𝑤𝑟 ∙ |(𝑟𝑘+𝑛 − 𝑠𝑘+𝑛,𝑖
′)|

2
+ 𝑤𝑘 ∙ |𝜃𝐾,𝑖|

2
 (7)

The next generation is produced from the ranked

population with probabilistic sampling. Parents are sampled

from the ranked population with a standard Gaussian

distribution, of which the fittest individuals are selected most

often. With a crossover rate 𝐶𝑟, children are reproduced from

the parent population by crossover from the two parental

chromosomes. Every child’s resultant chromosome is

additionally mutated. Only the top 𝐶𝑓 members of the

previous generation survive into the next generation. Finally,

𝐶𝑛 members enter the new generation to ensure the

optimization process is adapting with the system, described in

the next subsection.

The genetic algorithm progresses by reentering a loop to

evaluate this new generation, which continues the evolution

process. Allowing the system to implement the learned

control input from the very start of the learning process could

potentially be dangerous as the dynamics model has not been

validated rigorously with enough measurements. The learner

accumulates measurements and refines both the dynamics

model parameters and control policy parameters until

reaching a certain prediction and tracking error threshold,

ensuring that the next state does not stray far from the

reference state. Once that threshold is met, the learned control

policy is run in the system’s forefront.

The learned dynamics model and control policy adapt as

information is gathered, differing from a system in which a

dynamics model and control policy are specified a priori. The

latter system does not have the opportunity to update, likely

resulting in suboptimal trajectory tracking. The learned

system offers two main advantages: accuracy and

adaptability. The dynamics model incorporates the

approximate terramechanics of the current terrain, likely

offering more accurate trajectory tracking compared to a

terramechanics model specified a priori. Additionally, the

adaptive nature of the dynamics model extends to terrains

with different properties, such as ice, steep slopes, and mud,

thus unexpected terrain can be effectively traversed.

1) Underdetermined System Identification

Domain knowledge is critical to form a minimal

formalization both in structure and parameters. A

comprehensive model precisely characterizes a system but

requires more system parameters, which increases evaluation

computation and convergence time. Machine learning

techniques leverage quick iteration and immense computation

power by implementing a minimum description of the system

[15].

The implemented dynamics model and control policy as

proposed both suffer from being underdetermined.

Consequently, the dynamic parameter and control parameter

populations are at risk of prematurely converging to a local

well. The dynamics model intentionally does not fully capture

the system’s terramechanics behavior but instead simplifies

the model to reduce computation time in the algorithm. The

control policy has a consistent, nonlinear mapping from state

to input due to complex, unmodeled hardware effects but may

be characterized locally in a linear mapping.

A new member is injected into the population at every

generation to ensure that the genetic algorithm populations

adapt locally with the system state. The dynamic parameter

population receives a randomly generated member from the

entire parameter space to guarantee a globally-scoped search.

The control parameter population receives an inverse model

mapping representative of the system within the immediate

past timestep horizon of ℎ, a local approximation. The inverse

model is generated from vectors of previous control inputs

𝐴𝑘, corresponding state error 𝐸𝑘, and relevant system

parameters 𝑃𝑘, given in Eq. (8) and Eq. (9). The newest

control parameter member 𝜃𝐾,𝑙 is the linear least squared error

local approximation of the nonlinear control model, given in

Eq. (10). The constant presence of this local approximation

offers the genetic algorithm to adapt with the time-varying

system if the evolved solutions do not track as well.

 𝐴𝑘 = [

𝑎𝑘−ℎ−1

⋮
𝑎𝑘−1

] (8)

 𝐸𝑘 = [

𝑟𝑘−ℎ − 𝑠𝑘−ℎ

⋮
𝑟𝑘 − 𝑠𝑘

] (9)

 𝜃𝐾,𝑙 = [𝐸𝑘 𝑃𝑘]†𝐴𝑘 (10)

C. Baseline Controller

 To enable the GA to learn effectively, the baseline

controller is used to coarsely to track the trajectory. The

baseline controller we propose is broken up into two sections:

the velocity-tracking controller and the path-tracking

controller. The velocity-tracking controller attempts to track

the desired velocity profile of the trajectory. The velocity-

tracking base controller is a proportional controller, as shown

in Eq. (11), where 𝑉𝑑 is the desired velocity in the 𝑏̂1 direction

of the car as described in the appendix, 𝑉 is the current

velocity of the car, 𝐾𝑝 is a user-defined gain that is tuned on

the physical system, and 𝐶𝑉 is the commanded wheel speed.

The value of 𝐾𝑝 does not need to be fine-tuned, because after

the learner gathers an appropriate amount of data, poor tuning

will no longer affect the performance of the vehicle.

 𝐶𝑣 = 𝐾𝑝(𝑉𝑑 − 𝑽 ∙ 𝑏̂1) (11)

The path-tracking controller attempts to track the path of

the trajectory. The path-tracking base controller is a pure-

pursuit controller. Pure-pursuit controllers are a common

control strategy to enable a robot with Ackerman steering to

track paths. The equation describing the pure-pursuit

controller is shown in Eq. (12), where 𝐿 is the length between

the front wheels and the real wheels, 𝐿𝑑 is a look-ahead gain,

𝛼 is the path intersection angle, and 𝜙 is the computed

steering angle, as discussed in [16].

 𝜙 = tan−1 (
2𝐿sin(𝑎)

𝐿𝑑
) (12)

IV. EXPERIMENT

An experiment is run to determine if the proposed genetic

learning algorithm control meets two main goals. The first

goal is to verify if the GA can learn a dynamics model and

controller in standard form when applied to a practical

application. The second goal is to determine if the

performance of the GA is approximately the same as a state-

of-the-art NN approach. We hypothesize, that the two should

produce approximately equal tracking performance. The

performance metrics are error in trajectory tracking,

convergence time, and algorithm computation time at every

timestep. The metric used to determine how accurately a

trajectory is tracked is shown in Eq. (14), where 𝒓𝑇 𝑏⁄ is the

distance to the nearest portion of the trajectory from the car,

𝑇𝑐 is the time of convergence, and 𝑇𝑓 is the time to complete

ten laps. The computation time at each timestep is measured

using the algorithm environment’s stopwatch timer.

 𝐽 = ∫ |𝒓𝑇 𝑏⁄ |
𝑇𝑓

𝑇𝑐
𝑑𝑡 + ∫ (𝑉𝑑 − 𝑽 ∙ 𝑏̂1)

𝑇𝑓

𝑇𝑐
𝑑𝑡 (13)

The convergence time is how long it takes for the

controller to converge to the trajectory and continue to track

the trajectory accurately and repeatedly. Convergence time is

determined by user intuition.

To test the genetic algorithm, a simulation of an Ackerman

steering vehicle on a low friction inclined surface is used. The

simulation is designed to mimic extreme terrains comprised

of surfaces that are inclined and/or do not perfectly constrain

the wheel’s motion, such as sandy inclines or fine loose

rubble, among others. The terramechanics of sand or fine

loose rubble are different from a slippery incline and are more

complicated. However, a slippery slope acts as a simplified

test to understand the potential performance of the controller.

The dynamics that are implemented into the simulation are

derived below in the Appendix. To increase the validity of the

simulation, noise is added to all states and an estimator is used

to determine the state of the vehicle from only position

orientation and time measurements. The noise is specified in

Table 1, along with the parameters for the simulation

environment and vehicle.

Table 1: Parameters for the environment and vehicle

Parameter Value

Dynamic parameter 𝜇𝑠 lateral wheel slip

friction

5

Dynamic parameter 𝜇𝑤 forward wheel slip

friction

1

Trajectory sloped surface angle 𝛿 30°

Vehicle mass 1 kg

Vehicle wheel radius 0.10 m

Distance from vehicle center of mass to 0.16 m

center of rear wheel axle

Measurement sampling time and control

update rate

0.2 sec

Measurement Gaussian position noise (1𝜎) 1.3e-4 m

Measurement Gaussian rotation noise (1𝜎) 0.83e-4 rad

A. Test Procedure

To test the car, a predefined closed trajectory is specified

for the RC car to track on the slippery slope. The trajectory

remains constant throughout the test. Each controller is tested

with the same starting configuration, which is consistently

displaced from the reference trajectory. The car is

commanded to track the trajectory, which is done at first using

the baseline controller. Once the learned controller converges

to a solution that meets a user-defined performance criterion,

the trajectory is tracked using the learned controller. The

desired tracking velocity is 0.2 m/s. The trajectory is shown

in Figure 1.

B. Genetic Algorithm Implementation

The dynamic model used for the GA is described below in the

Appendix. From that derivation, the dynamic model

parameter population members have chromosome of length

two: friction coefficients, 𝜇𝑠 and 𝜇𝑤, describing lateral wheel

slip and wheel slip in the direction of wheel velocity.

The form of the controller is a time-varying gain matrix.

The action 𝑎 at every timestep is given by Eq. (14), where 𝜙

is the steering angle and 𝜔𝑤 is the rotation rate of the wheels.

The control gain matrix is populated with the parameters in

the control parameter chromosome, given by Eq. (15). The

gain matrix maps the path intersection angle, error in velocity,

and the estimated slope of the surface 𝛿 to the control actions

𝑎, given in Eq. (16).

 𝑎 = [𝜙 𝜔𝑤]′ (14)

 𝐾 = [
𝜃𝐾,1 𝜃𝐾,2 𝜃𝐾,3

𝜃𝐾,4 𝜃𝐾,5 𝜃𝐾,6
] (15)

 𝑎 = 𝐾[𝛼 Δ𝑉 𝛿] (16)

The fitness functions for each population are shown in Eq. (4)

and (7), of which the specific weight matrices the remaining

parameters for the GA are shown in Table 2.

Table 2: Hyperparameters for evolution process

Parameter Value

Steps compared for dynamics

evaluation (𝑛)

1

Steps compared for control

evaluation (𝑚)

2

Crossover Rate (𝐶𝑟) .67

Size of dynamic population 8

Size of control population 8

Number of breeders (𝐶𝑓) 3

Number of new members (𝐶𝑛) 1

Weight of prediction vector 𝑤𝑠 [103 103 0 0 180/pi 0]

Weight of tracking vector 𝑤𝑟 [1 1 0.01 0 0 0]

Weight control gain vector 𝑤𝐾 [0 10-7 0 0 0 10-7 0]

C. Implementation of Neural Network for Comparison

The genetic algorithm is compared to a supervised neural

network controller. The idea of neural network controller was

first introduced by Demetri Psaltis et al. [17], in which an

architecture is proposed for a general learning process. The

idea was further developed by Tomochika el al. [1], in which

a neural network tracks a trajectory with unstructured

uncertainty. This supervised neural network approach builds

on the referenced work. In this approach, the neural network

is used as a function approximator to the cost function, more

formally described in Eq. (17),

 𝑓(𝑠, 𝑎) ≈ 𝐶(𝑠, 𝑎) (17)

where 𝑠 stands for the state and 𝑎 stands for the action. In

this problem, to simplify the learning process, the state of

vehicle is chosen as follows in Eq. (18):

 𝑠 = [𝜑 𝑑 𝜌] (18)

𝜑 : the angle between the body of the vehicle and the

tangent of the target trajectory.

𝑑 : the shortest distance from the vehicle to the trajectory.

𝜌 : the angle between the body of the vehicle and the

original point of axes.

The cost value describes how well the vehicle near the

desired trajectory. Given the state value, the cost value of this

state is explicitly defined in Eq. (19).

 𝐶 = 𝑑2 + 𝑘 ⋅ 𝜌2 (19)

 The learning process consists of two stages. On the first

stage, vehicle is controlled to do a random walk strategy to

fully explore the target environment. In this process, all states,

actions, and cost values are collected as training data. Using

Figure 3: Trajectory for the car to track

𝑖̂′
𝑗̂′

1m

2m

Start

these data as training data, we train a neural network with

three layers as the function approximator. After the first stage

in the learning process, a cost function is learned, which could

be used to develop a control strategy. At each state, a unique

action could be selected to minimize the cost value based on

the neural network. However, this process is time-consuming.

Then, during the second learning stage, another neural

network is used to directly describe the control strategy. The

input of this neural network is the state and the output of the

neural network is the action, given in Eq. (20).

 𝑎 = 𝑔̂(𝑠) (20)

 Training data in this learning process is generated by

running the first neural network. After the second learning

process, the neural network is ready to be used as a controller.

 This neural network controller doesn’t use any dynamic

model information and therefore is a model-free method,

compared with the genetic algorithm. Due to limited space

and time of training, the vehicle is subject to easily crash into

the wall in the first learning stage. To address this problem,

the first learning stage is implemented on the simulator.

V. RESULTS

Both the learned controller and trained neural network

tracked the desired trajectory better than the baseline

controller, as shown in Figure 4. The tracking error integrated

across ten laps after convergence is shown in Table 3 and the

component error time history is depicted in Figure 5 and

Figure 6. The total computation time to finish ten laps

including the time to converge is shown in Table 4. The

average computation time, along with a standard deviation, is

reported in Table 5 with the computation at every timestep

depicted in Figure 7. The convergence time for both methods

are reported in Table 6 and depicted in Figure 8.

Table 3: Total tracking error comparison across ten laps

 Baseline Learner Neural Network

𝐽(𝑟) [m] 648 34 78

𝐽(𝑉) [m/s] 1393 44 23

𝐽𝑡𝑜𝑡 2041 78 101

Table 4: Total computation time comparison over ten

laps

 Baseline Learner Neural Network

time 348.7 s 1244.1 s 869 s

Table 5: Average computation time comparison on a dell

Xenon desktop in MatLab

 Baseline Learner Neural Network

mean 35 ms 330 ms 341 ms

std 15.4 ms 123 ms 26 ms

Table 6: Convergence time comparison

 Baseline Learner Neural Network

control NA 217 s 200 s

dynamics NA 40 – 130 s NA

Figure 4: Trajectory comparison of baseline, learner,

and neural network overlaid on desired trajectory

Figure 5: Time history of distance error comparison

between baseline, real-time learner, and supervised

neural network

Figure 6: Time history of velocity error comparison

between baseline, real-time learner, and supervised

neural network

Figure 7: Comparison of computation per evaluation

loop over time

Figure 8: Evolution of dynamic parameters over time

 From Figure 6, the GA converges to the real 𝜇 values with

very little error. The noise that is seen in the estimate is due

to the added noise in the measurements. The error for the

controller also converges to an approximately steady value.

Again, the variations are due to the injected noise. From

Table 5, the average computation time is relatively small,

making it possible to implement this method onto physical

systems. From these results, the GA is capable of learning

dynamics parameters for the simulated RC car, which

supports the hypothesis that the method can be implemented

on a practical system.

 Also, from the results above the GA performs similarly to

the NN in tracking error, average computation time, and

convergence time. There are no appreciable differences in

the reported performance metrics between the two methods,

which supports our hypothesis, that the GA has similar

performance to the state-of-the-art NN approaches, while

providing an interpretable model.

VI. LIMITATIONS

One major limitation of the proposed learned method is

model bias due to underfitting, which results from some

dynamic terms being excluded in the model structure. Model

bias is caused by assuming a model structure that does not

sufficiently describe the system. The model bias can be

reduced by enabling the model structure to change. For

example, the friction can be represented as a common friction

model summed with a polynomial with varying order and

coefficients. Enabling the GA to vary the order and

coefficients enables more complicated friction models to be

approximated. Similarly, polynomials can also be used to

incorporate more complex dynamic effects or control

methods.

Another limitation of the work is that the method proposed

likely will not perform well when the dynamic parameters or

optimal control parameters vary rapidly with time because the

GA will likely not converge on rapidly changing parameters.

For the simulation, the time varying effects of the control

parameters were slow, on the order of a lap, and the true

dynamic parameters were constant, so the GA could

continuously update the parameters. However, for other

applications, like drifting, this method may not work because

the controller may not be able to converge to a solution fast

enough to give accurate control and dynamic parameters. This

lag may be solved by making the computation time faster and

the convergence time faster.

The last major limitation is that user intuition is needed to

determine the underlying structure of the models. If the

underlying structure is selected poorly, the performance of the

method may be greatly reduced. Thus, care must be taken to

ensure that the underlying structure reflects the actual physics.

VII. CONCLUSION

In this paper, we proposed a new method for learning a

terramechanics model and an optimal controller using a

genetic algorithm. Unlike methods used in the past research

for learning terramechanics and optimal control models, the

proposed method creates an interpretable model, which can

be used to inform design changes of the vehicle or controller

and also derive scientific conclusions.

Simulation results show that for a practical system, the

proposed method performs approximately equal to a state-of-

the-art NN approach, while having the benefit of producing

an interpretable model. The simulation results also suggest the

computation time is low enough such that the method can be

implemented on a physical system with limited computational

capability.

ACKNOWLEDGMENT

The authors thank undergraduate researchers Eric
Langrebe, Chaska Yamane, and research adviser Ross
Knepper.

REFERENCES

[1] T. Ozaki, T. Suzuki, T. Furuhashi, S. Okuma, and Y.

Uchikawa, “Trajectory control of robotic manipulators using

neural networks,” IEEE Transactions on Industrial

Electronics, vol. 38, no. 3, pp. 195–202, Jun. 1991.

[2] H. Gao, X. Song, L. Ding, K. Xia, N. Li, and Z. Deng,

“Adaptive motion control of wheeled mobile robot with

unknown slippage,” International Journal of Control, vol.

87, no. 8, pp. 1513–1522, Aug. 2014.

[3] X. B. Peng, G. Berseth, and M. van de Panne, “Dynamic

Terrain Traversal Skills Using Reinforcement Learning,”

ACM Trans. Graph., vol. 34, no. 4, pp. 80:1–80:11, Jul.

2015.

[4] I. Vincent and Q. Sun, “A combined reactive and

reinforcement learning controller for an autonomous tracked

vehicle,” Robotics and Autonomous Systems, vol. 60, no. 4,

pp. 599–608, Apr. 2012.

[5] M. Cutler and J. P. How, “Autonomous drifting using

simulation-aided reinforcement learning,” in 2016 IEEE

International Conference on Robotics and Automation

(ICRA), 2016, pp. 5442–5448.

[6] B.-S. Chang and W. J. Baker, “Soil parameters to predict the

performance of off-road vehicles,” Journal of

Terramechanics, vol. 9, no. 2, pp. 13–31, Jan. 1973.

[7] G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida,

“Terramechanics-based model for steering maneuver of

planetary exploration rovers on loose soil,” J. Field

Robotics, vol. 24, no. 3, pp. 233–250, Mar. 2007.

[8] D. Savitski et al., “Improvement of traction performance

and off-road mobility for a vehicle with four individual

electric motors: Driving over icy road,” Journal of

Terramechanics, vol. 69, pp. 33–43, Feb. 2017.

[9] M.-R. Bouguelia, R. Gonzalez, K. Iagnemma, and S.

Byttner, “Unsupervised classification of slip events for

planetary exploration rovers,” Journal of Terramechanics,

vol. 73, pp. 95–106, Oct. 2017.

[10] J. Bongard and H. Lipson, “Evolved Machines Shed Light

on Robustness and Resilience,” Proceedings of the IEEE,

vol. 102, no. 5, pp. 899–914, May 2014.

[11] F. Corucci, N. Cheney, F. Giorgio-Serchi, J. Bongard, and

C. Laschi, “Evolving Soft Locomotion in Aquatic and

Terrestrial Environments: Effects of Material Properties and

Environmental Transitions,” Soft Robotics, vol. 5, no. 4, pp.

475–495, Aug. 2018.

[12] J. C. Bongard and H. Lipson, “Nonlinear System

Identification Using Coevolution of Models and Tests,”

IEEE Transactions on Evolutionary Computation, vol. 9, no.

4, pp. 361–384, Aug. 2005.

[13] M. Schmidt and H. Lipson, “Distilling Free-Form Natural

Laws from Experimental Data,” Science, vol. 324, no. 5923,

pp. 81–85, Apr. 2009.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning, 1st ed. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1989.

[15] J. Rissanen, “Modeling by shortest data description,”

Automatica, vol. 14, no. 5, pp. 465–471, Sep. 1978.

[16] R. C. Conlter, Implementation of the Pure Pursuit Path

’hcking Algorithm. 1992.

[17] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered

neural network controller,” IEEE Control Systems

Magazine, vol. 8, no. 2, pp. 17–21, Apr. 1988.

BIOGRAPHY

Frances Zhu earned her B.S. in

Mechanical and Aerospace Engineering

from Cornell University, Ithaca in 2014

and is currently pursuing a Ph.D. in

Aerospace Engineering at Cornell. Since

2014, she has been a Research Assistant

with the Space Systems Design Studio,

specializing in dynamics, systems, and

controls engineering. Her research interests include flux-

pinned interface applications, spacecraft system

architectures, robot dynamics, estimation, and controls. Ms.

Zhu is a NASA Space Technology Research Fellow.

D. Sawyer Elliott graduated from

Rochester Institute of Technology

with a Bachelor of Science in

Mechanical Engineering in 2015.

During his undergraduate career he

worked at M.I.T. Lincoln

Laboratory, where he worked on

small spacecraft for weather sensing.

Currently, he is a Ph.D. candidate at

Cornell University under Professor

Mason Peck, with a focus on dynamics and controls. While at

Cornell University he worked on a small spacecraft project

with the goal of autonomously docking two CubeSats. His

current research explores control methods for momentum

control systems, as well as the control of gyroscopically

actuated robotic systems and their applications for

exploration of extreme terrain.

Zhidi Yang received his B.S. degree in

Mechanical Engineering and his B.S.

degree in Computer Technology from

Shanghai Jiao Tong University. He

received his Master of Engineering

degree in Mechanical Engineering

from Cornell University. He

specializes in Controls, Dynamics, and

Robotics. His research focuses on

locomotion, manipulation, planning,

and control for legged robots, intelligent unmanned vehicles,

and other high-dimensional dynamic systems. His recent

work centers on applying machine learning to design of

robust control algorithms.

Haoyuan Zheng received his B.S.

degree in Electrical

Engineering from Harbin Institute of

Technology. He received his Master

of Engineering degree in Electrical

and Computer Engineering with a

specialization in robotics from

Cornell University. He is specialized

in vision and decision making in

robotics. He is interested in using

machine learning methods to

enhance robotic capabilities in vision and decision making.

APPENDIX

A. Dynamics Model

 A dynamics model of the vehicle is derived to enable

coarse tuning of the baseline controller, enable pre-training

for the NN learning algorithm, and provide a method for

evaluating each population of the genetic algorithm. The

dynamics are derived for the RC car described above in

Section IV but could be modified to represent a full-sized

car or other vehicles.

B. Simplifications

 For the derivation of the dynamics model, seven

simplifications are made:

1. The vehicle and the surface are assumed to be rigid

bodies.

2. The commands for rear wheel speed and steering

angle are assumed to be implemented

instantaneously, thus are quasi-static parameters.

3. The wheels are assumed to have zero inertia.

4. The car is assumed to only have two wheels: one in

the front of the car and one in the back. By assuming

only one wheel in the front, there is no need to

encode the kinematics of the Ackerman steering into

the model, simplifying the derivation. Simplifying

the model to have two wheels necessitates the unit

vector 𝑏̂2 shown in Figure 9 to be constrained to be

parallel with the surface, constraining the car to be

upright.

5. The only contact points between the car and surface

considered are the two points where the wheels

contact the surface.

6. Both wheels are constrained to stay in contact with

the surface at all times.

7. The friction between each wheel and the surface is

assumed to be a combination of coulomb friction and

viscous friction with a single 𝜇 value as shown in Eq.

(21), where 𝑉 is the difference in velocity between

the wheel and the surface that the wheel is in contact

with and 𝐹𝑁 is the magnitude of the normal force due

to contact between the wheel and the surface.

𝐹𝑓 = −𝜇(𝑉 + 𝐹𝑁sign(𝑉)) (21)

Figures 9 and 10 show the simplified model of the RC car.

The seven simplifications above reduce the computational

intensiveness of evaluating the equations of motion, enabling

the GA to be implemented onto a system with limited

computational capability. However, the simplified model

does not accurately model the dynamics of the car on all

terrains. For applications with more complex vehicle

dynamics or terrain, the designer must decide on a proper

model fidelity such that the dynamics accurately represent

their system while remaining computationally tractable.

Figure 9. The point cm represents the center of mass of the

car, including the wheels. The points p and c represent the

points on the rear and front wheels that are in contact with

the surface. The unit vectors 𝒘̂𝒊 represent the coordinate

system associated with the front wheel-fixed frame of

reference, 𝐖. The unit vectors 𝒃̂𝒊 represent the coordinate

system associated with the body-fixed frame of reference,

𝐁.

Figure 10. The unit vectors 𝒊̂, 𝒋,̂ and 𝒌̂ represent the

coordinate system for an inertially-fixed frame of

reference, 𝐍, which is not aligned with the plane. The unit

vectors 𝒊̂′, 𝒋̂′, and 𝒌̂′ represent the coordinate system

associated with an inertially-fixed frame of reference, 𝐍′,

which is aligned with the plane. For the derivation shown,

𝒋 ̂and 𝒋̂′ are equal. For arbitrary orientations of the slope,

𝒋 ̂and 𝒋̂′ may not be equal.

C. Derivation

1) Nomenclature

For the derivation, the following nomenclature is used. Not

all symbols in each equation are described below, but an

example of each symbol is provided. The vector 𝒓𝑝 𝑜⁄ is a

vector spanning from point 𝑜 to point 𝑝. The vector
d

N

d𝑡
𝒓𝑝 𝑜⁄ is

the derivative of 𝒓𝑝 𝑜⁄ with respect to the inertially-fixed

frame, N. The vector
d

N 2

d𝑡2 𝒓𝑝 𝑜⁄ is the derivative of
d

N

d𝑡
𝒓𝑝 𝑜⁄ with

respect to the inertially-fixed frame, N. The vector 𝝎W B⁄ is

the rotation rate of frame W with respect to B. The dyadic 𝑰 is

𝑏̂2 𝑤̂1

𝑐𝑚

𝑏̂1

𝑤̂1

𝑐𝑚

𝑏̂3

𝑝

𝑝

𝑐

𝑐

𝑤̂2

𝑤̂2

𝑤̂3

𝑏̂1

𝑏̂1
𝑏̂2

𝑏̂3

𝑗̂, 𝑗̂′

𝑖̂

𝑘̂

𝑐𝑚

𝑘̂′

𝑖̂′

𝑜

the vehicle’s inertia dyadic about its center of mass. The

scalar 𝑚 is the mass of the vehicle and 𝒈 is the gravity vector.

1) Equations of Motion

The equations of motion are derived by first determining

the equations for the rate of change of the system’s angular

and linear momenta with respect to the inertially-fixed frame,

N. The derivative of the angular momentum of the vehicle

with respect to the inertially-fixed frame, N, about point 𝑜 is

shown in Eq. (22).

d

N

d𝑡
𝑯 = 𝒓𝑐𝑚 𝑜⁄ × 𝑚

d
N 2

d𝑡2 𝒓𝑐𝑚 𝑜⁄ + 𝑰 ∙
d

N

d𝑡
𝝎B N⁄ + 𝝎B N⁄ × (𝑰 ∙

𝝎B N⁄) (22)

The derivative of linear momentum of the car with respect to

the inertially-fixed frame is shown in Eq. (23).

d

N

d𝑡
𝑳 = 𝑚

d
N 2

d𝑡2 𝒓𝑐𝑚 𝑜⁄ (23)

Next, equations are derived for the forces and moments

acting on the vehicle. There is a total of three forces acting on

the body: one contact force at each wheel, and the force due

to gravity acting at the system’s center of mass. The contact

forces at point 𝑝 and 𝑐 are each separated into three

orthogonal forces: 1) forces normal to the surface acting in the

𝑏̂3 direction, denoted as 𝑭𝑝𝑏3
 and 𝑭𝑐𝑏3

; 2) friction forces due

to the commanded rotation rate of the wheels in the 𝑏̂1 and 𝑤̂1

directions, denoted as 𝑭𝑝𝑏1
 and 𝑭𝑐𝑤1

; 3) frictions forces due

to the sideways slipping of the wheels in the 𝑏̂2 and 𝑤̂2

directions, denoted as 𝑭𝑝𝑏2
 and 𝑭𝑐𝑤2

. The equations

describing the friction forces 𝑭𝑝𝑏1
, 𝑭𝑐𝑤1

, 𝑭𝑝𝑏2
, 𝑭𝑐𝑤2

are

shown in the Eqs. (24-31), where 𝑟𝑤 is the radius of the front

and rear wheels, and 𝜔𝑤 is the rate of rotation of the front and

rear wheels about the 𝑤̂2 and 𝑏̂2 axes, respectively.

𝑭𝑝𝑏1
= 𝜇𝑤 (Δ𝑉𝑝𝑏1

+ |𝑭𝑝𝑏3
| sign (Δ𝑉𝑝𝑏1

)) 𝑏̂1 (24)

Δ𝑉𝑝𝑏1
= 𝑟𝑤𝜔𝑤 −

d
N

d𝑡
𝒓𝑝 𝑜⁄ ∙ 𝑏̂1 (25)

𝑭𝑐𝑤1
= 𝜇𝑤 (Δ𝑉𝑐𝑤1

+ |𝑭𝑐𝑏3
| sign (Δ𝑉𝑐𝑤1

)) 𝑤̂1 (26)

Δ𝑉𝑐𝑤1
= 𝑟𝑤𝜔𝑤 −

d
N

d𝑡
𝒓𝑐 𝑜⁄ ∙ 𝑤̂1 (27)

𝑭𝑝𝑏2
= −𝜇𝑠 (Δ𝑉𝑝𝑏2

+ |𝑭𝑝𝑏3
| sign (Δ𝑉𝑝𝑏2

)) 𝑏̂2 (28)

Δ𝑉𝑝𝑏2
=

d
N

d𝑡
𝒓𝑝 𝑜⁄ ∙ 𝑏̂2 (29)

𝑭𝑐𝑤2
= −𝜇𝑠 (Δ𝑉𝑐𝑤2

+ |𝑭𝑐𝑏3
| sign (Δ𝑉𝑐𝑤2

)) 𝑤̂2 (30)

Δ𝑉𝑐𝑤2
=

d
N

d𝑡
𝒓𝑐 𝑜⁄ ∙ 𝑤̂2 (31)

The sum of all forces acting on the vehicle is shown in Eq.

(32).

𝑭𝑇 = 𝑭𝑝𝑏1

+ 𝑭𝑝𝑏2
+ 𝑭𝑝𝑏3

+ 𝑭𝑐𝑤1
+ 𝑭𝑐𝑤2

+ 𝑭𝑐𝑏3
+

𝑚𝒈 (32)

The sum of all moments acting on the vehicle about point 𝑜

is shown in Eq. (33).

𝑴𝑇 = 𝒓𝑝 𝑜⁄ × 𝑭𝑝𝑏1
+ 𝒓𝑝 𝑜⁄ × 𝑭𝑝𝑏2

+ 𝒓𝑝 𝑜⁄ × 𝑭𝑝𝑏3
+

𝒓𝑐 𝑜⁄ × 𝑭𝑐𝑤1
+ 𝒓𝑐 𝑜⁄ × 𝑭𝑐𝑤2

+ 𝒓𝑐 𝑜⁄ × 𝑭𝑐𝑏3
+

 𝒓𝑐𝑚 𝑜⁄ × 𝑚𝒈 (33)

The conservation of angular and linear momenta yield Eqs.

(34 - 35).

d
N

d𝑡
𝑳 = 𝑭𝑇 (34)

d
N

d𝑡
𝑯 = 𝑴𝑇 (35)

The unconstrained vehicle has six degrees of freedom.

However, the vehicle is constrained to not fall over, restricting

the vehicle to five degrees of freedom: the rotation of the

vehicle about 𝑏̂2 and 𝑏̂3, and the translation of the vehicle in

the 𝑏̂1, 𝑏̂2, and 𝑏̂3 directions. The vehicle is further

constrained to three degrees of freedom, the vehicle’s rotation

about 𝑏̂3, and the vehicle’s translation in the 𝑏̂1 and 𝑏̂2

directions, by constraining points 𝑝 and 𝑐 to remain in contact

the surface.

The three constraints in conjunction with Eqs. (34,35)

enable the equations of motion of the remaining three degrees

of freedom to be derived. For brevity, the equations are not

shown.

