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Abstract— Objective: This paper describes the development
and preliminary offline validation of an algorithm facilitating
automatic, self-contained learning of ground terrain transitions
in a lower limb prosthesis. This method allows for continuous,
in-field convergence on an optimal terrain prediction accuracy
for a given walking condition, and is thus not limited by
the specific conditions and limited sample size of an in-lab
training scheme. Methods: We asked one subject with a below-
knee amputation to traverse level ground, stairs, and ramps
using a high-range-of-motion powered prosthesis while internal
sensor data were remotely logged. We then used these data
to develop a dynamic classification algorithm which predicts
the terrain of each stride and then continuously updates the
predictor using both data from the previous stride and an
accurate terrain back-estimation algorithm. Results: Across 100
simulations randomizing stride order, our method attained a
mean next-stride prediction accuracy of ∼ 96%. This value
was first reached after ∼ 200 strides, or about ∼ 5 minutes
of walking. Conclusion and significance: These results demon-
strate a method for automatically learning the gait patterns
preceding terrain transitions in a prosthesis without relying
on any external devices. By virtue of its dynamic learning
scheme, application of this method in real-time would allow for
continuous, in-field optimization of prediction accuracy across a
variety of walking variables including physiological conditions,
variable terrain geometries, control methodologies, and users.

I. INTRODUCTION

With the advent of powered lower limb prostheses, in re-
cent years there has been considerable interest in developing
suitable control algorithms facilitating efficient, comfortable,
and biomimetic gait for people with lower limb amputations.
In particular, a large body of work has focused on developing
algorithms for the anticipation and adaptation to different
walking terrains such as level ground, ramps, and stairs [1]–
[15]. Studies have explored a multitude of machine learning
algorithms and sensing modalities, many reporting a high
degree of success in a laboratory environment, and almost
always on a small cohort of subjects.

Training procedures for developing these machine learning
algorithms are often time consuming. For a given set of
sensors and a powered prosthesis platform, studies involve
logging data, often over multiple days, from multiple sub-
jects traversing a given terrain. This is followed by manual
offline terrain labeling and a pattern recognition analysis.
For real-time control tasks, offline algorithms must then
be translated into embedded languages, with no guarantee
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that the predictive models will perform as well as they
did in simulation when subjected to new terrains, users,
control methodologies, prosthesis platforms, or physiological
conditions – it is impractical to include all such possible
conditions in one training set.

Some attempts have been made to automate aspects of
the machine learning process. Zhang et. al. used an external
system during data collection to automatically identify terrain
with high accuracy and train a machine learning model
online, without the overhead of offline labeling and analysis
[17]. However, the main drawback of this approach was the
requirement for an external system for labeling, making re-
training in alternate conditions burdensome and impractical.
Spanias et. al. used an adaptive EMG-based machine learning
model to compensate for EMG disturbances [10], but this
system did not include a method for labeling the terrain
and thus did not directly optimize for prediction accuracy.
Additionally, the part of the model employing intrinsic sensor
signals was static.

In this work, we address the problem of non-generalized
models and burdensome training routines by developing a
method to automatically and continuously train a pattern
recognition algorithm using only the intrinsic sensors on-
board a below-knee prosthesis. This model relies on an
accurate back-estimation step, which uses a heuristic to label
strides after they have been taken, and thus continually
updates the predictor with new training data. The back-
estimation step was enabled largely by a novel high range-
of-motion (ROM) prosthesis which allows the use of ankle
angle during stance to distinguish inclined terrains from level
terrains. Currently, the only commercially available powered
below-knee prosthesis, the EmPower by Ottobock, has a lim-
ited 22 degree ROM with zero degrees of dorsiflexion [19],
[20], which is insufficient to span even the biological range of
level-ground walking (10 degrees dorsiflexion to 18 degrees
plantarflexion [18]), let alone alternative terrains. Similarly,
most powered prostheses in the research environment are
designed to operate on level-ground [21]–[24]. The novel
mechanical system used for this study enables 115 degrees
ROM, spanning the entire mean biological ROM and conse-
quently allowing for significant biomechanical differentiation
between ground terrains.

By employing an incremental learning algorithm leverag-
ing the backward estimation of terrain labels and a high-
ROM prosthesis, we achieve a field-usable automatic training
method that requires no manual processing steps or external
devices. This method would enable a powered prosthesis
to automatically update a customized terrain predictor that



continuously converges on the optimal prediction accuracy
for a given walking condition. This method is computation-
ally efficient, employing a physics-based heuristic for back
estimation and an order O(f2) incremental learning step
once per stride, where f is the number of model features.
Finally, while the method was developed on training data
obtained from a transtibial prosthesis, the method is also
applicable in the transfemoral case.

II. METHODS

A. Data collection

1) Overview: We asked a subject with a unilateral
transtibial amputation to don a novel powered lower limb
prosthesis (described below) and traverse various terrains
including level ground, stairs, and ramps. While the subject
was walking we remotely logged data from internal pros-
thesis sensors, including ankle angle, ankle torque, and raw
inertial measurements from a six degree-of-freedom (three
accelerometers, three gyroscopes) inertial measurement unit
(IMU), and filmed the subject to facilitate manual labeling
of terrains to provide a ground truth terrain identity. We
developed and tested our method in an offline simulation
using the data collected during these trials.

2) Prosthesis: The prosthesis, referred to as TF8 and first
described in [16], is a new system built to achieve biological
kinetics and kinematics that enable operation over a range of
terrain conditions. The TF8 is a torque controlled powered
prosthesis designed around a series elastic actuator that can
provide peak torques up to 180 Nm across a 115 degree total
operational ROM. The system architecture, shown in Figure
1, consists of a large gap radius motor (manufactured by T-
Motor) modified to integrate a ballscrew into the rotor. The
ballscrew applies a linear force to an output moment arm that
generates a torque about the ankle joint. An axial load cell
directly measures the force in the screw. This force signal
is evaluated along with the joint encoder measurements to
determine the effective joint torque with an accuracy of
±0.5 Nm. The joint encoder is a 14-bit absolute encoder,
AS5048 (manufactured by Austria Microsystems). Inertial
measurements are performed by the motion tracking MPU-
9250 (InvenSense) included in the control unit printed circuit
board assembly. The control unit consists of a customized
embedded system platform based on the FlexSEA system
designed by Dephy, Inc. The system includes a motor driver
and a separate mid-level control system that is based on the
STM32F427 32-bit Cortex M-4 microcontroller operating at
180 Mhz. A control loop running at 1 kHz reads sensor
values, and runs a state-machine that defines the desired
operating condition based on evaluated system parameters.
A state defines a desired joint torque utilizing the impedance
control parameter τ = K(θm − θd) +Bθ̇ defined by Hogan
[25]. A closed-loop torque controller then asserts a torque
on the joint by converting the torque command to a desired
motor current that the FlexSEA motor drivers internal current
controller commands at the motor. Bidirectional data is
communicated to a high-level controller across a wireless
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Fig. 1: (a) The TF8 mechatronic system architecture is a
reaction force series elastic actuator with an on-board em-
bedded control system. (b) The Control Unit is a derivative
of the FlexSEA embedded system from Dephy, Inc. that
includes a motor driver unit and mid-level controller. A
state machine runs on the mid-level controller that defines a
desired impedance command and runs a closed-loop torque
controller to define the behavior of the physical actuator.
(c) The TF8 has 115 degree total ROM with 35 degrees of
dorsiflexion.
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Fig. 2: Stride time point snapshots. Stride objects include both initial and target stance periods to allow back-estimation of
stride terrain using data from the target stance period.
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Fig. 3: Overall architecture of the incremental learning algorithm. An LDA classifier is initialized with zero means and an
identify covariance matrix. Subsequently, each new stride undergoes a prediction and back-estimation step. In prediction,
the current LDA classifier is applied to predict the next terrain. In back-estimation, the stride is labeled post completion and
the LDA classifier parameters are updated with the new training data.

Bluetooth protocol. These experiments utilized a laptop com-
puter to log system state data through the wireless channel.

To enable terrain agnostic data collection a single state
control scheme was implemented with a saturation threshold
on joint torque. An impedance controller was set to a joint
stiffness of 3 Nm/deg and 0.2 Nm·s/deg damping. When the
joint angle θm reached beyond a threshold of 10 degrees in
either dorsiflexion or plantarflexion direction the θm value
was set to this threshold value, θth. This saturation provided
stability for the subject while also enabling the joint angle
to adapt to the terrain.

B. Offline processing

1) Initial processing: We divided all data into individual
strides using thresholds on ankle torque and timers for swing
and stance phases. Individual strides were defined by the
period from the beginning of one stance period to the end
of the subsequent stance period, so as to include enough
information for the back-estimation of stride terrains. The
resulting stride list thus contained all strides n = 1 : N with
time points t(n)stance, t

(n)
swing , t(n+1)

stance, and t
(n+1)
swing (illustrated

in Figure 2), ankle angle, ankle torque, and six IMU signals
in the window [t

(n)
stance, t

(n+1)
swing]. Finally, we manually labeled

all strides using trial videos as ground truth evaluation of the
back-estimator.

2) Signal extraction: We were then interested in ex-
panding the set of signals upon which to perform pattern
recognition. This was shown to be advantageous in our
previous work [13]. In particular, we extracted first-order

integrals and derivatives of all IMU signals for each stride,
producing 12 additional signals. All derivatives were filtered
using a first-order recursive low-pass filter. Next, we used the
IMU signals to extract inverse kinematics of the ankle joint,
using a method similar to that employed in [13]. This step
generated signals for shank pitch and its two-dimensional
sagittal-plane accelerations, velocities, and positions.

3) Feature extraction: For each stride, we extracted the
mean, range, maximum, minimum, time of maximum, time
of minimum, and final value of all IMU-derived signals
(6 raw, 12 integrals and derivatives, 7 inverse kinemat-
ics) as well as ankle angle and torque in the window
[t
(n)
static, t

(n)
swing + tcutoff ], where t(n)static was a zero velocity

time point identified in the window [t
(n)
stance, t

(n)
swing] using

the inverse kinematics algorithm and tcutoff was a defined
time after t(n)swing chosen to cutoff data collection for the
current gait cycle in order to allow enough time for prosthesis
actuation in the case of real-time adaptive control.

4) Incremental learning simulation: We performed 100
incremental learning simulations, each time randomly order-
ing the stride list so as to simulate receiving training data
in an arbitrary order. For each simulation, we employed an
algorithm for incrementally training a linear discriminant
analysis (LDA) classifier by updating intra-class and inter-
class feature means and an interclass feature covariance
matrix at every stride. All means were initialized at zero, and
the covariance matrix was initialized as an identity matrix.

The overall architecture of the incremental learning algo-
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Fig. 4: (a) Heuristic back-estimation of stride terrain based
on vertical ankle joint position ∆z(n) and mean joint posi-
tion µ(n+1)

θ in [t
(n+1)
stance, t

(n+1)
swing]. (b) A visualization of these

parameters for a representative terrain transition.

rithm is illustrated in Figure 3. In particular, the following
steps were performed sequentially on every stride:

1) Stride classification using the extracted feature set for
prediction and LDA classifier with current class means
and feature covariance matrix. This algorithm can be
described as:

δ
(n)
k (~xn) = ~xTnΣ−1~µk −

1

2
~µTk Σ−1~µk + log(πk) (1)

∀ k ∈ C where C is the five-element list of all
candidate terrains, ~xn represents the feature vector
calculated on stride n, Σ−1 represents the feature
covariance matrix inverse, ~µk represents feature means
for each of the possible terrains k ∈ C, and πk is
the prior probability of terrain k. For each stride, the
predicted terrain k̂(n) was calculated using:

k̂(n)(~xn) = argmax
k∈C

δ
(n)
k (~xn) (2)

2) Back-estimation of the stride terrain k = k̃(n) used a
heuristic, physics-based algorithm following the simple
decision tree depicted in Figure 4. This algorithm
relied predominantly on two signals, namely the ankle

vertical position at t(n+1)
stance and the mean ankle angle

in the window [t
(n+1)
stance, t

(n+1)
swing].

3) Update of class population pk and ~µk using ~xn and
the back estimated stride label k:

p
(n)
k = p

(n−1)
k + 1 (3)

~µ
(n)
k =

(p
(n)
k − 1)~µ

(n−1)
k + ~xn

p
(n)
k

(4)

4) Update of within-class covariance matrix Σ using ~xn.
This method for incrementally updating a covariance
matrix is known as Welford’s algorithm:

~µ(n) =
(n− 1)~µ(n−1) + ~xn

n
(5)

Σ(n) =
(n− 1)Σ(n−1) + (~xn − ~µ(n))(~xn − ~µ(n−1))T

n
(6)

5) Analysis: Across simulations, we calculated the mean
next-stride prediction accuracy. Additionally, for each indi-
vidual simulation we calculated the accuracy of the last 100
strides.

III. RESULTS

A. Initial stride list

The subject took a total of 551 strides, including 329
level ground, 29 ascending a ramp, 35 descending a ramp,
82 ascending stairs, and 76 descending stairs. The back-
estimation heuristic correctly identified > 99% of strides.
Mean prediction accuracy for the nth stride across 100
simulations is shown in Figure 5. The simulation includes
only 482 strides because 69 strides (all of which were made
on level ground) were automatically labeled as level because
their swing periods were too short (that is, t(n+1)

stance−t
(n)
swing <

Tcutoff ). Mean accuracy for the past 100 strides across five
representative simulations are shown in Figure 6. Finally, an
LDA model trained on all strides achieves a back-substitution
accuracy of 98.1%.

IV. DISCUSSION

Our results indicate that accurate back-estimation and
incremental learning can be used to gradually improve the
accuracy of a prosthetic terrain prediction system, without the
need for an offline training process. If employed on prosthetic
firmware or on a device that is frequently connected to a
prosthesis, the algorithm can be used to continuously update
a dynamic machine learning model such that it will provide
maximum accuracy for a given walking condition.

Figure 5 demonstrates that the incremental LDA learner
approaches an optimum accuracy over time, across arbitrary
stride orders. The time constant to optimum accuracy appears
to be approximately 200 strides. Given an average of 1.5
seconds per stride in our data set, this equates to about
300 seconds or 5 minutes to reach a high accuracy. Beyond
this point, the accuracy continues to grow but more slowly,
gaining about 2% on average between 200 strides and 450
strides.



Fig. 5: Mean prediction accuracy of nth stride among 100 simulations. Standard deviations of accuracy for all time points
were below 0.5%.

Fig. 6: Mean prediction accuracy of last 100 strides for five
representative simulations.

The learning does not necessarily occur monotonically;
Figure 5 shows a local minimum in accuracy at approxi-
mately 50 strides, after a peak of about 80%. The reasons
for this dip are unclear, but it may have to do with the
preponderance of level ground strides in the data set. This
would lead to situations in which substantial learning has
been completed on level ground strides before many strides
of other classes are encountered. This result would be verified
with additional subject testing.

Of note in Figure 6 is the variable rates of learning seen
among simulations. We see that learning in any particular
simulation is almost never monotonic, exhibiting potentially
several substantial local minima on the way to the final
accuracy and in some cases (green) not improving over 200
strides before quickly catching up. Beyond the variability,
this figure also suggests that we are training data limited.
While they exhibit local minima, we see that all simulations
do trend upward in their accuracy; it is likely that, given
enough training examples, all simulations would reach the
optimum achieved in Figure 5 and local fluctuations would
become less severe.

Finally, the high back-substitution accuracy (98.1%) of an

LDA model trained on all strides provides further evidence
that it is possible to attain a significantly higher accuracy
than that in Figure 5, given a greater amount of training
data. Perhaps the main reason we do not achieve the higher
accuracy is the covariance update (Welford”s) algorithm,
which only approximates the next covariance matrix rather
than measuring it exactly. We approximated this error by
finding the difference between the norms of the approximated
covariance matrix and the true covariance matrix at different
time points in a simulation, and found that the difference
appears to grow approximately linearly over time. Therefore,
one aspect of future work would likely involve correcting
the covariance matrix. This could be done by periodically
directly measuring the covariance for the last n strides using
suitable processing and data storage systems.

A. Future work

Avenues for future work include the addition of new
intrinsic sensing modalities to further improve prediction
accuracy, and incorporation of this algorithm into an em-
bedded microcontroller for in-field learning and analysis.
Additionally, beyond automatic updates of means and co-
variances, it is useful to determine methods of automatically
updating the feature set. In particular, it is possible that
providing the ability to select different features as input in
a predictor depending on the situation could further improve
capability. Finally, it would generally be useful to increase
the amount of training data and incorporate intentionally
modified walking conditions so as to study the behavior of
the algorithm over time.
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