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Abstract—Detecting COVID-19 early may help in devising an appropriate treatment plan and disease 
containment decisions. In this study, we demonstrate how pre-trained deep learning models can be adopted to 
perform COVID-19 detection using X-Ray images. The aim is to provide over-stressed medical professionals a second 
pair of eyes through intelligent image classification models. We highlight the challenges (including dataset size and 
quality) in utilising current publicly available COVID-19 datasets for developing useful deep learning models. We 
propose a semi-automated image pre-processing model to create a trustworthy image dataset for developing and 
testing deep learning models. The new approach is aimed to reduce unwanted noise from X-Ray images so that deep 
learning models can focus on detecting diseases with specific features from them. Next, we devise a deep learning 
experimental framework, where we utilise the processed dataset to perform comparative testing for several popular 
and widely available deep learning model families such as VGG, Inception, Xception, and Resnet. The experimental 
results highlight the suitability of these models for current available dataset and indicates that models with simpler 
networks such as VGG19 performs relatively better with up to 83% precision. This will provide a solid pathway for 
researchers and practitioners to develop improved models in the future.  
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I. INTRODUCTION 

The current COVID-19 pandemic has impacted the world with over 2.3 million infections and close to 160,000 
deaths so far (as of 19th April 2020). Early identifying, isolation and care for patients is a key strategy for a better 
management of this pandemic [1]. Our study aims to provide a conceptual framework to support COVID-19 
detection with the use of image classification using deep learning models. The study will demonstrate how deep 
learning can be used for COVID-19 detection, which could be used as a supporting tool for highly constrained 
health professionals in determining the course of treatment. The study further develops a pre-processing pipeline 
for improving the image quality, for deep learning-based predictions. We also provide a comparative study 
between several pre-trained deep learning models which will provide insights for further system development in 
this application domain.  

Fast, accessible, affordable and reliable identification of COVID-19 pathology in an individual is key to 
slowing the transmission of COVID-19 infection. Currently, reverse transcriptase quantitative polymerase chain 
reaction (RT-qPCR) tests are the gold standard for diagnosing COVID-19 [2].  During this test small amounts of 
viral RNA are extracted from a nasal swab, amplified, and quantified with virus detection indicated visually 



using a fluorescent dye. Unfortunately, the RT-qPCR test is manual and time-consuming with results taking up 
to two days. Some studies have also shown false positive Polymerase Chain Reaction PCR testing [3]. Other 
testing approaches include imaging technology-based approaches including computed tomography (CT) 
imaging [4] and X-Ray imaging based [5][43]. The CT scan-based COVID-19 detection is time consuming and 
manual with the requirement of expert involvements. Several automated approaches have been proposed 
recently [4, 6, 7].  Both the PCR tests and CT scans are comparatively costly [8, 9] and with high demand many 
countries are forced to perform selective testing for only high risk population. 

X-Ray imaging is relatively cost effective and commonly done for lung infection detection and is useful for 
COVID-19 detection as well [10]. Medical observations were made by one of the co-author of this research (Dr. 
Saha) who is also a medical professional, as well as by treating doctors of the COVID-19 dataset [11] patients. 
The common features observed in the X-Ray images of patients with COVID-19 is a patchy infiltration or 
opacities that bear similarities to other viral pneumonia features. X-Ray images do not show any abnormalities 
in the early stages of COVID-19.  However, as the disease progresses, COVID-19 gradually manifests as a 
typical unilateral patchy infiltration involving mid zone and upper or lower zone of the lungs, occasionally with 
evidence of a consolidation. Figure 1 shows the progression of evidence for a patient in the COVID-19 dataset. 

(a) 22/01/2020 (b) 25/01/2020 (c) 27/01/2020 (d) 28/01/2020 

Figure 1: COVID 19 progression over several days for a sample patient. 

Computer vision diagnostic tools for COVID-19 from X-Ray images would provide an automated “second 
reading” to clinicians, assisting in the diagnosis of COVID-19 and informing better decision making in the 
global fight against the disease. COVID-19 often results in pneumonia, and for radiologists and practitioners 
differentiating between COVID-19 pneumonia and other types of pneumonia (viral and bacterial) solely on the 
basis of X-Ray images could be challenging [12]. 

Deep learning artificial neural networks, and in particular the Convolutional Neural Networks (CNNs) have 
proven to be highly effective in a vast range of medical image classification applications [13, 14].  In this study, 
we comparatively tested five (5) common off-the-shelf pre-trained CNNs namely VGG16/VGG19 [15], 
Resnet50 [16], Inception V3 [17] and Xception [18] to determine which CNN implementation is the most 
effective within the limitations of the publicly available COVID-19 X-Ray image samples [11]. The key goals 
of our experiments with these models is to find the most suitable deep learning model applicable for the 
available data for COVID-19 detection from X-Ray images. We aim to apply the models with two distinct 
scenarios: 

(a) Identifying pneumonia (both COVID-19 and other types) affected lung against normal lung. 
(b) Identifying COVID-19 affected lung from non COVID-19 pneumonia affected lung. 

Noting that the source X-Ray image samples, especially those from the COVID-19 data set, have been 
harvested from multiple sources and are of inconsistent quality we have implemented a pre-processing pipeline 
to reduce unwanted signal noise such as non-lung area visible in X-Rays, and thereby reduce the impact of 
sampling bias on this comparison. Through this pre-processing pipeline, we only identify lung area and remove 
rest of the X-Ray image. This would allow models to train on lung features only thus having a greater chance of 
learning disease features and ignoring other noise features. 



In the following sections we first present a brief review of recent scholarly works related to this study, 
followed by a discussion on the available datasets we used and related challenges. We then present the dataset 
generation process along with our proposed pre-processing pipeline for data quality balancing. We then present 
the deep learning model selection process along with comparative results and discussions. 

 

II. RELATED WORK 

Computer aided detection and diagnosis of pulmonary pathologies from X-Ray images is a field of research 
that started in the 1960s and steadily progressed in the following decades with papers describing highly accurate 
diagnosis of a range of conditions including osteoporosis [19], breast cancer [20], and cardiac disease [21].   

Difficulties in distinguishing soft tissue caused by  poor contrast in X-Ray images have led some researchers 
to implement contrast enhancement [22] as a pre-processing step in X-Ray based diagnosis. In addition, lung 
segmentation of X-Ray images is an important step in the identification of lung nodules and various 
segmentation approaches are proposed in the literature based on linear filtering/thresholding, rolling ball filters 
and more recently CNNs [23]. 

In our literature review we noted a small number of very recent studies that have used deep learning systems 
for COVID-19 screening and diagnosis. A custom-built 18-layer residual network pre-trained on the ImageNet 
weights against COVID-19 (100 images) and Pneumonia (1431 images) X-Ray image datasets [24]. A range of 
deep learning frameworks coined as COVIDX-Net trained on a small data set of 25 confirmed COVID-19 cases 
[25]. A custom curated dataset of COVID-19, viral pneumonia and normal X-Ray images [26]. A custom 
residual CNN that was highly effective in distinguishing between COVID-19, Pneumonia and normal condition 
X-RAY images [27]. These studies used the COVID-19 dataset [11] for the COVID-19 X-Ray samples and the 
RSNA dataset [28] was used to get pneumonia and normal X-Ray samples. Although some of these studies 
showed promising results, they have not addressed the variable quality of the COVID-19 data set or 
minimisation of sampling bias. We also noted that the experimental datasets used in these studies are quite 
unbalanced. Class imbalance is a common problem in medical image data sets that can lead to over-
classification of the majority class at the expense of under-classification of the minority class [29]. 

The COVID-19 dataset [11] is probably the only publicly available source for some COVID-19 X-Ray 
images at present. The quality of these images is highly inconsistent since these images were shared from 
different parts of the world and are often taken in non-ideal conditions and vastly different equipment. On the 
other hand, the RSNA dataset [28] showed more uniformity and appeared to be highly curated.  The quality 
variation between these two datasets are often readily apparent to the untrained eye as shown in Figure 2. The 
RSNA dataset also contains a large number of patients who are juvenile. The COVID-19 dataset however 
contains mostly adult patients. These discrepancies between these datasets are mostly ignored by currently 
available studies. This may have impacted the performance of the models they developed, since there is a good 
chance that the deep learning models learned the quality discrepancies between the two datasets rather than 
characteristics of the diseases. 

We believe the significant quality variations between data from different classes need to be balanced for 
deep learning models to learn actual disease related variations. Therefore, our study stresses the importance of 
sampling bias/signal noise removal from the X-Ray image datasets prior to using them for model development 
and classification in order to obtain meaningful and trustworthy classification results. We present the dataset 
creation process in the next section. 
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(b) Typical Sample from the COVID19 dataset  
Figure 2: Visual comparison of typical samples from the RSNA and COVID-19 datasets. 

 

III. DATASET DEVELOPMENT 

A. Data sourcing 

Large numbers of X-Ray images are available from a number of publicly accessible datasets. With the 
emergence of COVID-19 being very recent none of these large repositories contain any COVID-19 labelled 
data, thereby requiring that we rely upon at least two datasets for Normal, Pneumonia and COVID-19 source 
images. 

COVID-19 chest X-Rays were obtained from the publicly accessible COVID-19 Image Data Collection [11].  
This collection has been sourced from websites and pdf format publications. Unsurprisingly, the images from 
this collection are of variable size and quality. 

As of our most recent data that we have downloaded was on 12 April 2020. There was a total of 115 PA 
view images tagged as COVID-19 within this data set. The sizes of these images are highly variable with the 
smallest being 255 x 249 pixels and the largest being 4280 x 3520 pixels. Image contrast levels, brightness and 
subject positioning are all highly variable within this dataset. The data set mostly contains data for adult 
patients. Few examples of this variability are shown in Figure 3. 



   
(a) Good quality image (b) Squared off image (c) Abnormally long focal 

distance  

   
(d) Washed out – high 

brightness/low contrast 
(e) Incomplete projection.  

Intrusive medical 
appliances 

(F) Image with markings 

Figure 3: Different variations observed in the COVID-19 dataset. 

National Institute of Health (NIH) Chest X-Ray [30] – a source of 112,120 anonymized labelled X-Ray 
images with 14 condition labels including Pneumonia and normal conditions. The images are of a similar size, 
[31] quality and aspect ratio to the typical images in the COVID-19 dataset with dimensions being uniformly 
1024 x 1024 pixels in a portrait orientation. A comparison of images from the NIH dataset to the COVID-19 
dataset is shown in Figure 4.   

  
(a) Typical sample from NIH dataset (b) Typical Sample from the COVID19 dataset 

Figure 4: Visual comparison of samples from the NIH and COVID-19 datasets 

Visually, the levels of intra dataset difference between images are similar. While the differences between the 
samples from two datasets are also not strongly apparent as it was evident between RSNA and COVID-19 
datasets in Figure 2. We consequently chose this dataset as the source for pneumonia and normal condition X-
Ray images. 

Our findings in relation to available data sources is summarised in Table 1: 

 



TABLE 1: SUMMARY OF DATA SOURCES CONSIDERED 

Collection Number of Images Characteristics Notes 

COVID-19 Image Data 
Collection [11] 

115 COVID-19 (PA) 
Variable size, quality, contrast 

and brightness. 

Only source of COVID-19 PA 
X-Ray images and used in this 

study. 

Montgomery County X-Ray 
Set[32] 

80 Normal 
58 Tuberculosis 

N/A 
Not used due to too few normal 

images and no pneumonia 
labelled images 

Kaggle RSNA Pneumonia 
Detection Challenge [28] 

8851 Normal 
9555 Lung Opacity 

11821 No Lung Opacity/Not 
Normal 

Very uniform.  PA view differs 
to typical COVID-19. 

Clear systematic visual 
differences to the COVID-19 
collection, hence not used in 

this study 

NIH Chest X-Ray[30] 
322 Pneumonia 

60361 No Finding 

Uniformity similar to COVID-
19 dataset.  All images are 

1024 x1024 in size. 

Objectively similar in quality 
to the COVID-19 Image Data 
Collection. Used in this study. 

B. Data Sampling  

In this study we aim to use real X-Ray data only and not considering creation and use of synthetic data at 
this stage. We also planned to use balanced dataset size for our model experiments. From the two source 
datasets COVID-19 and NIH, a master dataset containing COVID-19, Pneumonia and Normal images was 
created for our model development and testing purposes. The COVID-19 dataset was curated to remove images 
that were the wrong projection, poorly cropped, low resolution or where medical devices were a dominant 
feature (since these might draw the attention of the machine learning algorithms). This left us with 100 usable 
samples for COVID-19 dataset. Since the NIH dataset contains much more samples, we used down sampling 
technique to select matching numbers of samples for Normal and Pneumonia cases. The Pneumonia and Normal 
samples were selected from the downloaded NIH dataset randomly and excludes samples for juvenile patients. 
A small number of images selected in this way were found to contain medical devices (pacemakers) which we 
were concerned might draw the attention of the machine learning algorithms, so these images were discarded 
and replaced with a random selection until such devices were absent from the data set. The results of this 
procedure are summarised in Table 2. 

TABLE 2: SAMPLED DATASET FOR EXPERIMENTS 

Source Condition 
Number of 

source images 
Number of 

curated images 
Curation notes 

COVID-19 Image 
Data Collection 

COVID-19 115 100 

Incorrectly labelled sample excluded 
Low quality images (low pixel count, poorly 

cropped etc.) excluded 
Samples with medical devices excluded 

NIH Chest X-Ray Pneumonia 
322 

 
100 

100 samples chosen randomly 
Juvenile patients excluded 

Samples with medical devices 

NIH Chest X-Ray Normal 60361 200 
200 samples chosen randomly 

Juvenile patients excluded 
Samples with medical devices 

C. Data Pre-Processing 

1) Equalization of Sampling Bias  
We recognised that although we were using only two different datasets (COVID-19 and NIH) for our 

experiments; we were in fact relying upon data sourced from an unknown number and variety of X-Ray 
machines, exposure parameters and operator behaviour. Systematic image exposure and brightness differences 
for the datasets proved to be particularly concerning and several researchers have indicated that medical image 
analysis methods are highly sensitive to variations of image intensities [33] and, [34].  Research has shown that 
the feasibility of an automated analysis system requires that “the intensity of the same tissue should always be 
similar in one image and not vary with the location of the tissue”[34].  This principle when extrapolated to the 
many images utilised in machine learning algorithms, implies that all images in the sample data sets should have 
similar intensity for the same tissue over the entire set of images as well as within a single image. 



Since the machine learning classifiers use a pixel array as a data source then any systematic difference in 
pixel intensity between the datasets would introduce sampling bias in the result. This would have the 
consequence of training the machine learning classifiers on systematic image histogram differences rather than 
the actual clinical image content of interest. 

To minimize the effect of sampling bias, we applied histogram equalization to images using the OpenCV 
equalizeHist [35] function. As shown in Figure 5, the equalization process greatly improved the image 
brightness/contrast consistency across datasets. The same effect was observed within each data set.  
Subjectively, the authors can no longer easily tell which image has been drawn from which dataset purely on 
image brightness and contrast characteristics alone. 

(a) COVID-19 original (b) COVID-19 equalized (c) COVID-19 equalized and 
segmented 

  
(d) Pneumonia original (e) Pneumonia equalized (f) Pneumonia equalized and 

segmented 

  
(g) Nomal original (h) Nomal equalized (i) Nomal equalized and 

segmented 
Figure 5: Results of equalization and segmentation on original samples for COVID-19, Pneumonia and Normal images. 

2) Segmentation based noise reduction 
Since the COVID-19 and Pneumonia affects the lung, we wanted to improve machine learning classification 

attention to the lung region of interest only. The aim is to remove the noise data such as collar bone, neckline, 
border, diaphragm etc. around the lung area. The natural way to achieve this was by cropping all but the lung 
area from the images sent to the classifier. The efficacy of this approach in medical image classification is 
supported in past studies [36]. A comprehensive review of lung area segmentation techniques may be found in 



[37]. This study notes that intra-thoracic pathology, external objects such as jewellery and even subject position 
and posture all adversely affect the current lung segmentation algorithms and the problem of accurate lung 
segmentation from PA X-Rays is an open problem. 

Our data sets show these problematic characteristics, and perfect automatic lung segmentation was therefore 
unlikely regardless of the technique applied. We applied the OpenCV GrabCut [38] function, which was 
previously used for CT scans [39] as a simple tool implement segmentation technique on our equalized images.  
We reasoned that the lung area could be considered the foreground of the X-Ray image. The segmented results 
for different image classes are shown in Figure 5.  

3) Pre-processing Pipeline 
Firstly, the pre-processing pipeline shown in Figure 6 is responsible for applying histogram equalization and 

the GrabCut algorithm to the sample images.  Images are first read before being resized to 640 x 640 pixels.  
This initial resize is performed in order to optimize the performance of the downstream GrabCut process. We 
found by experimentation that GrabCut worked much better on the reversed image compared to the original 
image.  Following the application of GrabCut, the image again reversed (back to normal) to complete the pre-
process. 

The detailed pre-processing pipeline is shown in figure 6. 

 

Figure 6: Data pre-processing pipeline. 

 

IV. MODEL DEVELOPMENT 

A. Classification Pipeline 

The basic classification pipeline is shown in Figure 7, which reads in images sorted into subdirectories with 
subdirectory name used as the image classes. The images are resized into 224 x 224 pixels array before being 
randomly split into 80:20 training and testing data subsets. Image data was augmented only with a rotation 
operation with a range of 15. 

Each tested model is then trained over 20+ epochs with precision, recall, training and testing accuracy and 
loss metrics are captured for further analysis.  

 

Figure 7: Classification pipeline. 
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B. Model Consideration 

One of the key objectives of this study was to achieve state-of-the-art classification results using publicly 
accessible data and “out-of-the-box” models with transfer learning to both compensate for the limited size of the 
sample data, and to accelerate the training process so that this could be reasonably performed on modest 
hardware. 

For these reasons we have selected five deep learning models as classifiers for our experiments.  
Conveniently, these models are all available as part of the Keras API and each support transfer learning [44] in 
the form of supporting the pre-application to the model of the ImageNet [40] weights. 

1) VGG16 and VGG19 
VGG16 and VGG19 [15] are convolutional neural network (CNN) architectures with very small convolution 

filters (3x3) and a stride of 1 designed to achieve high accuracy in large-scale image recognition applications.  
The two implementations differ in depth of convolution/max-pooling and fully connected layers, with VGG16 
having 16 layers in the base model and VGG19 having 19 layers. 

2)  ResNet50 
The ResNet [16] CNN was developed as a means of avoiding the vanishing gradient problem inherent in 

deep neural networks by implementing a system of skip connections between layers – known as residual 
learning.  This architecture results in a network that is more efficient to train, allowing for deeper networks to be 
designed that positively impact the model accuracy. ResNet50 is such a network with 50 layers implementing 
residual learning.  

3) Inception V3 
The Inception V3 [17] CNN aimed to improve utilization of computing resources inside the network by 

increasing the depth and width of the network whilst keeping computation operations constant. The designers of 
this network coined the term “inception modules” to describe an optimised network structure with skipped 
connections that is used as a building block. This inception module is repeated spatially by stacking with 
occasional max-pooling layers to reduce dimensionality to a manageable level for computation. 

4)  Xception 
The Xception [18]  CNN was developed by Google Inc. as an “extreme” version of the Inception model.  

The Inception modules described above are replaced with depth wise separable convolutions. This Xception was 
shown to outperform Inception on a large-scale image classification dataset (comprising 350 million images of 
17,000 classes).  

V. MODEL ASSESSMENT 

A. Computing Infrastructure 

All the experiments were performed using an off-the-shelf Lenovo P50 laptop with an Intel Core i7-6820HQ 
CPU @ 2.70GHz 4 Core CPU.  The laptop hosts an NVIDIA Quadro M1000M GPU and an Intel HD Graphics 
530 on-board graphics card.  There was 32GB physical RAM installed. 

B. Experiment Setup 

To ensure a consistent comparison across the models, each model was instantiated with a uniform output 
head as shown in Figure 8: 

 



 

Figure 8: Head architecture of the proposed models. 

Each experiment was performed 20 times with using 20 Epochs, Learning Rate = 1e-3 and a Batch Size of 8. 

C. Experiment Dataset 

The master dataset was utilised for training and validation with each candidate classifier over 2 experiments 
per classifier as shown in Table 3.  

Processed dataset is available for public use at https://github.com/mhorry/SegmentedLungCXRs 

TABLE 3: DATASETS USED FOR EXPERIMENTS 

Experiment ID Experiment Dataset   

Experiment 1 Normal vs COVID-19 and Pneumonia. 

200 x Normal 
vs 

100 x COVID-19 
100 x Pneumonia 

Experiment 2 COVID-19 vs Pneumonia 
100 x Pneumonia 

Vs 
100 x COVID-19 

 

D. Comparative Results and Discussions 

The experimental results are listed in Table 4.  For each classifier we have noted average Precision (P), 
Recall (R) and F1 score over the 20 experimental runs. 

Experiment 1 classified normal condition against a combined dataset of COVID-19 and Pneumonia.  
Experiment 2 classified COVID-19 vs Pneumonia. 

The numbers provided in the Table 4 shows averages over 20 test cycles as percentages (%). 

TABLE 4: PERFORMANCE RESULTS FOR TESTED MODELS 

Experiment 
 
 

VGG16 
 

VGG19 
 

ResNet50 
 

InceptionV3 
 

Xception 
 

P R F1 P R F1 P R F1 P R F1 P R F1 
Experiment 1: 

Normal vs. 
(COVID-19+ Pneumonia) 

82 80 80 83 80 80 70 67 66 68 65 61 69 57 48 

Experiment 2: COVID-19 
vs, Pneumonia 

83 81 80 83 81 81 67 58 51 41 50 36 30 50 34 

 

To understand these results it is useful to consider the learning curves for experiment 1 as shown in Figure 9. 

Base Model (VGG16/19, ResNet50, Inception, Xception)

Average Pooling 2 x 2

Flatten

Fully Connected (Relu) Dimension = 64

Dropout = 0.5

OUTPUT: Fully Connected (Softmax) Dimension = 2 



  
(a) VGG16 (b) VGG19 

(c) ResNet50 (d) Inception V3 (e) Xception 
Figure 9: Learning curves for different models. 

One interesting observation is that the deeper networks, being ResNet50, Inception and Xception exhibited 
poor performance compared to the shallower networks being VGG16 and VGG19. Noting that our sample sizes 
were small (200 samples for each class in Experiment 1 and 100 samples per class in Experiment 2 and the 
challenges inherent in training CNNs with small data sets as described by D’Souza et al. [41]. We suspect that 
we did not have enough X-Ray samples to train these deeper networks. Given the currently limited number of 
quality samples of COVID-19 X-Ray images, we believe that the VGG16 or VGG19 classifiers to be the most 
accurate off-the-shelf for classification of COVID-19 and Pneumonia from Normal condition, and for COVID-
19 vs Pneumonia. Both VGG16 and VGG19 performed very well in Experiment 1 and both were successful in 
distinguishing between normal and COVID-19 or Pneumonia pathologies with an average F1 score of 80%.  
VGG19 slightly outperformed VGG16 in experiment 2 with a 1% improvement in F1 score for experiment 2 
following an additional 20 training cycles indicated by the original VGG19 training curve for experiment 2. 

As additional high quality COVID-19 X-Ray image sample become available we expect that the VGG-19 
classifier to generally outperform the VGG-16 classifier.  For this reason, we recommend the VGG19 classifier 
over the VGG16 classifier. 

VI. CONCLUSIONS 

We have demonstrated that deep learning models for the automated identification of COVID-19 to be 
feasible using publicly available X-Ray image sample training/validation data and off-the-shelf deep learning 
algorithms. 

We provided a pre-processing pipeline aimed to remove the sampling bias. Our results of around 80% for 
both recall and precision are reasonable firstly, given our small, and variable quality, COVID-19 X-Ray image 
sample size, and secondly that trained clinicians have an interpretative radiological error of 2 – 20% depending 
on the radiological investigation [42].  

We found that both VGG16 and VGG19 classifiers provided good results within the experimental 
constraints of the small number of currently available COVID-19 X-Ray image samples.  As the number of 
available COVID-19 X-Ray image samples increases we will be able to provide enough training data corpus to 
the deeper networks (ResNet50, Inception, and Xception) and thereby obtain better results from these classifiers.  
This will be the subject of our future work. 



Despite our good results, we would urge great caution in the development of clinical diagnostic models 
using currently available COVID-19 X-Ray image data. The effect of a false positive diagnosis of COVID-19 
on an individual is the isolation of the individual and their contract traces and the mental anguish and stress 
caused by both the prognosis and the social isolation. A false positive COVID-19 diagnosis could result in an 
inappropriate course of treatment. The effects of a false negative COVID-19 diagnosis would also be 
devastating for the individual if that diagnosis led to an inappropriate course of treatment, and the community 
since cautions against COVID-19 transmission may not be appropriately applied resulting in the further spread 
of the disease. 

As a higher quality corpus of COVID-19 X-Ray image data becomes available, it may be possible to 
produce deep learning based clinical models for the fast diagnosis of COVID-19 as distinguished from similar 
conditions such as Pneumonia.  Such a tool would prove invaluable in practice, where other diagnostic tests for 
COVID-19 are either unavailable or unreliable. As the COVID-19 spread progresses throughout remote and 
economically challenged locations an ability to diagnose COVID-19 from a readily available chest X-RAY 
image would help slow the spread of the disease and result in a better medical outcome for the population.   
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