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Abstract

Modern computer vision and machine learning techniques, when applied in Fractogra-

phy bare the potential to automate much of the failure analysis process and remove

human induced ambiguity or bias. Given the complex interaction between intrinsic

(e.g. microstructure) and extrinsic (e.g. environment, loading history) factors leading

to failure, deep learning methods, which exhibit very high efficiency in establishing

complex interconnections between the input data, may end up revealing new correla-

tions and information that is encoded onto the complex geometries of fracture surfaces

and remained hidden from us so far. In this work, we examine the potential use of an

unsupervised learning pipeline to classify fracture surfaces of five tungsten heavy alloys

following their chemical content (i.e. Tungsten percentage). Encouraged by the success

of the algorithms, we move on and analyze the features on the fracture surfaces which

are governing the decision process of the algorithms. The fractographic interpretation

of these features shows that the extent of plasticity on the fracture surface serves as a

measure for the classification process. The examined pipeline can be used to identify

failures originating from erroneous manufacturing processes, leading to locally varying

Tungsten concentrations and ultimately premature failure.
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1. Introduction

Materials science has heavily relied on visual inspection since its early days. The

analysis of microstructural data, obtained through various microscopy techniques has

become a corner stone in materials science and engineering, allowing to establish process-

microstructure-properties correlations. Similarly, fractographic examination of frac-

tured specimens and components is extensively used to understand the mechanisms

driving the fracture process and their relation with the operating conditions and un-

derlying microstructure. It is no surprise then that the material science community

has readily adopted emerging technologies in the field of computer vision, and more

specifically recent advances in Machine Learning (ML). Mainly, these approaches im-

plement supervised learning methods, where a neural network, after being trained on a

large dataset of images (usually obtained by different microscopy methods), performs

predictions on a test dataset. The focus of the majority of published works in this field,

is on the identification and classification of the microstructure of different material sys-

tems, aiming to establish microstructure-property linkages or serve as a tool for quality
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assurance (DeCost et al., 2017). Kondo et al. (2017) used seven ceramic micrographs,

synthesized with varying sintering temperature and time, to train a Convolutional Neu-

ral Network (CNN) aimed at identifying the corresponding ionic conductivities. In Az-

imi et al. (2018), a semantic segmentation CNN is trained in extracting and classifying

microstructural constituents of low carbon steel in Scanning Electron and Light Optical

Microscopy images, while DeCost et al. (2019) implement a similar pixelwise CNN to

segment four principal micro-constituents in a heat-treated Utrahigh Carbon Steel mi-

crostructure dataset. Chowdhury et al. (2016) implemented different machine learning

methods (visual bag of words, texture and shape statistics, and pretrained CNNs) to

extract features from micrographs that depict dendritic morphologies and consequently

classify them with support vector machine, voting, nearest neighbors and random forest

models. Recently, a significant contribution to the field of crystallography was made

by Kaufmann et al. (2019), where a collection of Electron BackScattered Diffraction

(EBSD) patterns with characteristic crystal structures was used to train a machine

learning algorithm in identifying the origin Bravais lattice or point group of a sample

from raw EBSD data. While the papers cited so far are only a small portion of the pub-

lished literature where machine learning techniques are employed for microstructural

characterization, much less progress was done in the field of fractography. The major-

ity of published works where computer vision techniques are employed for automated

fractography are based on classical image processing techniques, e.g. edge detection,

texture analysis etc. To the authors best knowledge, Bastidas-Rodriguez et al. (2020);

Konovalenko et al. (2018); Kitahara and Holm (2018) and Tsopanidis et al. (2020) , are

the only published works where ML techniques have been successfully applied for frac-

tographic analysis which goes beyond feature enhancement (e.g. automatic extraction

of dimple size).

Although supervised machine learning approaches are proven very efficient, the

requirement of an extensive and time-costly training process constitutes a drawback

and the reliance of the annotation process on human input can potentially introduce

bias or errors. Furthermore, these algorithms usually fail in performing predictions
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on microscopy images of material systems with morphological and micro-structural

characteristics that deviate substantially from the training dataset. Thus, recent pub-

lications propose unsupervised learning approaches, which combined with pre-trained

CNNs (transfer learning) intent to overcome this limitation and enable inference on

microscopy images from broader range of material systems; or even achieve mate-

rial independent performance. The methods introduced in Lubbers et al. (2017), in

which the Gram matrices, constructed from the activation maps of the hidden layers

of a pre-trained CNN, are used for microstructural characterization, appear to be very

promising. Finally, Kitahara and Holm (2018) propose an unsupervised learning algo-

rithm that implements a pre-trained CNN to extract features from two different image

datasets of metal alloys and combines it with dimensionality reduction algorithms to

group them into clusters according to their visual similarities. Most of the aforemen-

tioned publications present machine learning methods that exhibit very high accuracy,

but only few exceptions (Kondo et al., 2017; Kaufmann et al., 2019) go one step further

and investigate the internal operations that enable this high efficacy or interpret the

performance of the algorithm. Kondo et al. (2017) is using a variation of Class Activa-

tion Maps (CAM) (Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017) methods

to visualize the locations that are activated by the intermediate layers of the neural

network and provide a physical interpretation of the results. Similarly, Kaufmann et al.

(2019) compute the Grad-CAM visualizations and their interpretation shows that the

neural network bases its predictions on the same features a crystallographer would use

to identify the crystal structure.

Despite the great promise and proven successes of machine learning techniques listed

above, some degree of skepticism is often met when discussing their contribution and

future perspectives with scientists from the fracture mechanics community. Many voices

are heard, calling for a more rigorous evaluation of the proposed methods and better

interpretation and understanding of the internal functions that enable the high efficacy

of these algorithms (Holm, 2019). The second, perhaps more alluring question, relate to

the extent to which machine learning can add to our current understanding of fracture
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processes and to what degree it is over-hyped or truly a new tool in our arsenal that

can lead us to new, exciting revelations. Thus, two main questions regarding machine

learning methods need to be answered:

– What are they good for? In computer science and information theory, machine

learning methods have shown very promising results and their efficiency is proven,

however in fracture mechanics only few very recent publications have started

exploring their potential and the results reported, although very encouraging,

require more extensive research as to their advantages and limitations. An im-

portant question in this regard is whether machine learning is only useful to make

previously tedious tasks more readily achievable (e.g. Tsopanidis et al. (2020) )

or it can allow us to go beyond what is conceived feasible today. Consider for

example the on going quest to correlate fracture surface roughness with fracture

toughness (Barak et al., 2019; Mandelbrot et al., 1984; Srivastava et al., 2014),

can new correlations be found? What other information could be hidden in the

complex geometry of fracture surfaces we have not even considered looking for so

far?

– How do they work? A better understanding of the functionality of the Machine

Learning methods implemented in Fracture Mechanics will enable more efficient

evaluation of their performance and allow the research community to explore new

applications and realize their full potential. To some extent machine learning

methods have been treated as a ”black box” and this approach does not allow

the researchers to properly evaluate their applicability and creates a reasonable

incertitude. The inferability of machine learning techniques, given that new cor-

relations can be found, are the basis for finding causalities and expanding our

knowledge as to the mechanistic origin of those presumed correlation.

The work presented here is aimed at scratching the surface of the two questions posed

above through a simple example. We will demonstrate that while the topography of
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a fracture surface is traditionally considered a poor indicator to its chemical content,

a data pipeline can be constructed to assist in clustering fracture surfaces of tungsten

heavy alloys (WHA), following their tungsten content. More over, we identify the

features on which the used machine learning algorithm is basing it predictions.

Our research builds upon the work of Kitahara and Holm (2018) and presents two

algorithms that enable clustering and classification of an SEM fracture images dataset,

according to the composition of the alloy material samples that are used for acquir-

ing the fracture surfaces. The first part of this data clustering pipeline constitutes a

CNN, which is using pre-trained set of weights to extract meaningful features from the

input fracture images, and the second part is a sequence of dimensionality reduction

algorithms that cluster the images according to the similarity of the extracted features.

Subsequently, this pipeline is extended with the addition of a minimally supervised

algorithm, which enables the classification of the clustered data points. Finally, the

visualization of the activation maps of the last convolution layer of the neural network

enables the analysis of the internal operations that enable the pipeline to cluster the

fracture images and the interpretation of the neural network’s functionality.

2. Material and Method

2.1. Dataset

Five different samples of tungsten heavy alloys (WHA), with different composition

of tungsten (90wt%, 92wt%, 95wt%, 97wt% and 99wt%) were produced. The WHA

flat tensile specimens at varying tungsten density were loaded at a strain rate of 1000

s−1, using a split Hopkinson tension bar apparatus. Subsequently, the fracture surfaces

were scanned using a Tescan MIRA3 FEG-SEM and a dataset of 10 SEM images with

size of 4096 × 4096 pixels was created. This dataset contains 2 SEM images for each

tungsten composition category (each image taken from a different specimen). Finally,

the images were cropped to the size of 448×448 pixels and the final dataset is composed

by 810 SEM images; 162 images for each tungsten composition.
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Figure 1: SEM fracture images from WHA samples with different mass percentage of tungsten. The

images in each row belong to samples with the same tungsten mass percentage.

Fracture in WHA is mainly attributed to W-W boundary brittle fracture, W-matrix

de-cohesion, ductile matrix rupture and W grain to grain cleavage. As a result, one

fracture surface contains many fracture mechanisms within it, thus making it com-

plicated to infer. The fracture surfaces are very similar and even for an experienced

7



fractographer will be very difficult to realize any differences. In Fig. 1, four randomly

selected images of size 448 × 448 pixels from each sample group are presented. With

exception of the samples with 99% mass percentage of tungsten, the rest of the SEM

images exhibit very similar morphology.

2.2. Clustering data pipeline

Following the Kitahara and Holm (2018) approach, a clustering algorithm is devel-

oped. The main objective of this algorithm is to group the dataset of WHA fracture

images into different clusters according to the tungsten mass composition of the sample

they belong to.

Figure 2: Schematic flowchart of the clustering data pipeline.

The clustering algorithm is a 4-part data pipeline, where the dimensionality of the

input data is reduced after each stage. A schematic flowchart of the algorithm is

presented in Fig. 2 and the function of each stage is defined as follows:

� VGG16: the VGG16 neural network architecture (Simonyan and Zisserman,

2014), where the final Fully-Connected layers are replaced by a Global Average

Pooling (GAP) layer, is used to extract features from the input SEM fracture

images. The network, using a set of pre-trained weights on the ImageNet dataset

(Russakovsky et al., 2015), performs predictions on the SEM images. Each frac-

ture image of the dataset is imported into the network and, after passing through

all the consecutive layers, the last convolution layer outputs a sequence of 512

two-dimensional feature maps for each image. The GAP layer at the end of the
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network computes the mean value for each feature map and exports a feature

vector in R512 for each input image. This modified network architecture enables

the extraction of 512 features from each input image. Thus, a set of weights,

although being trained on an extensive dataset of images that have no relevance

to fracture images, when loaded to the modified VGG16 architecture allows the

network to reduce the dimensionality of the input images from 224× 224 to 512

dimensions and extract meaningful information from the input data; the fracture

images were resized to 224× 224, before inserted into the VGG.

� PCA: a Principal Component Analysis (Karl Pearson F.R.S., 1901) on the feature

vectors extracted by VGG allows the computation of the 50 principal components

that maximize the total variance of the data. This linear-dimensionality reduction

algorithm expresses each feature vector, which corresponds to a certain fracture

image, with respect to 50 principal axes that maximize the total variance of the

data. The algorithm enables the estimation of the ”importance” of each principal

component, by computing the eigenvalues of the covariance matrix of the set of

feature vectors and furthermore the computation of the weight that each feature

extracted by VGG has on each principal axis, by computing the eigenvectors of

the covariance matrix.

� t-SNE: this algorithm (van der Maaten and Hinton, 2008) performs a non-linear

dimensionality reduction on the set of feature vectors in R50 that is exported by

the PCA. It computes similarities between the data points in the 50-dimensional

space and projects them onto the 2D space, according to these similarities. The

final output of this stage is a 2D plot. By the end of this third part, the pipeline

achieves to project the initial fracture images dataset onto data points on a 2D

plot, in positions that enable clustering according to similarities of the fracture

images.

� k-Means: the k-Means algorithm (Lloyd, 1982) groups the data points, exported

by t-SNE into 5 clusters, according to their Euclidean distances in the 2D space.
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As a result, k-Means assigns a label to each data point according to the cluster

that it belongs.

This 4-part data pipeline is an unsupervised machine learning algorithm that groups

any dataset into a predefined number of clusters, without requiring any training process;

even the first part of the pipeline that is a neural network does not require additional

training, since it implements the transfer learning technique. The computer code for

this algorithm is developed in Python with the implementation of Keras (Chollet et al.,

2015) and scikit-learn (Pedregosa et al., 2011) libraries; Keras is used for building

the VGG16 model and subsequently the inference operation of the first part of the

pipeline, while the scikit-learn functions are implemented for the other parts of the

pipeline. The final output is a 2D scatter plot where the position of each data point is

defined according to similarities on the high-dimensional space of the input dataset. The

performance of this algorithm on the dataset of the WHA fracture image is evaluated

in the next section.

2.3. Classification data pipeline

The previous clustering pipeline can be extended into a classification algorithm, with

the addition of a k-Nearest Neighbors (KNN) algorithm (Cover and Hart, 2006) at the

end of the pipeline. The k-Nearest Neighbors is referred to as a minimal supervision

algorithm because the training process only involves saving the training data points

and the corresponding labels. During the inference operation, the algorithm calculates

the Euclidean distances between each test data point and all the training data points,

which enables the computation of k nearest neighbors in the training dataset for each

test data point. Finally, KNN assigns to each test data point the label that has the

most representatives among the k neighbors.

The definition of a computational framework that combines the training and in-

ference operations of the algorithm enables the classification of the fracture images

according to the 5 tungsten composition labels. A schematic flowchart of this compu-

tational framework is presented in Fig. 3 and the outline of this computation process
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Figure 3: Schematic flowchart of the computation framework of the classification algorithm.

follows the next steps:

1. Initially, 90% of the WHA fracture images dataset is set as training images, while

the rest 10% is set as test images.

2. The entire dataset is imported into the VGG - PCA - t-SNE pipeline and the

result is a 2D scatter plot. This plot is separated into a plot that contains only

the training data points and another one with the test data points.

3. The training data points, projected onto the specific locations on the 2D plot

by the VGG - PCA - t-SNE pipeline, are imported into another pipeline con-

structed by k-Means and KNN algorithms.

4. A mesh grid with dimensions large enough to accommodate every training and

test data point is created and KNN enables the classification of every grid point

into one of the 5 tungsten composition labels, using the training data points

and their annotations. The result of this step is a colormap, where each area is

assigned to a different tungsten composition label.

5. The final step involves plotting the test data points, with the positions predicted

by the VGG - PCA - t-SNE pipeline, onto the colormap. The label of the area

that each test data point is placed defines the classification of the test point.

This computation process enables the classification of a fracture images test dataset

according to pre-defined labels, when a training dataset with the corresponding anno-

tations are provided.
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3. Results and discussion

3.1. Clustering of fracture images

The clustering data pipeline, presented in the previous section, is implemented on

the dataset of WHA fracture images and the results are presented in this section. Differ-

ent parameters for the intermediate algorithms of the pipeline have been investigated.

More specifically, the PCA algorithm was tested with 50 or 100 principal components

and t-SNE was implemented with Barnes-Hut approximation for the gradient compu-

tation (Van Der Maaten, 2013), and it was tested for perplexity values in the range

of (5, 50), learning rate in range (100, 1000) and the number of iterations was varied

between 1000 to 10000 iterations. Finally, k-Means algorithm was tested with ran-

dom or k-means++ centroid initialization; kmeans++ is an initialization scheme for

the cluster centroids, which has been implemented in scikit-learn according to Arthur

and Vassilvitskii (2006).

The combination of the parameter values that resulted into the best performance

for this clustering pipeline is presented in Table 1.

Algorithm Parameters

PCA Number of principal components = 50

t-SNE Perplexity = 40, Learning rate = 200, Iterations = 3000

k-Means Centroid initialization = k-means++

Table 1: Parameters of the clustering pipeline that enable the highest efficiency clustering of the WHA

fracture images dataset.

The dataset of 810 SEM images, obtained by fracture experiments on the WHA

samples with different tungsten composition, is imported to the clustering data pipeline

and the resulted 2D scatter plot is shown in Fig. 4.

The initial qualitative assessment of the result shows that the algorithm succeeds in

creating three distinct clusters (green, blue and red data points in the plot), while k-

Means manages to separate the main cluster in the middle by assigning different labels
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Figure 4: Clustering results on the WHA fracture images dataset.

to the data points. Subsequently, in order to quantify the performance of the algorithm

the data points are plotted with their ground truth labels (Fig. 5).

The ground truth plot shows that the algorithm fails to cluster correctly the data

points that belong to the first SEM fracture image of the sample with 90wt% tungsten

composition; for each tungsten composition sample two SEM images were obtained and

then cropped before added to the dataset, as it was explained in the beginning of the

previous section. The erroneous predictions are marked (see crossed data points in Fig.

6) and the accuracy of the algorithm is computed to 81.2%.

Additionally, the confusion matrix presented in Fig. 7 verifies that the main source

of clustering errors is the data points that originate from the first SEM fracture image

of the sample with 90wt% tungsten composition.

In numerous tests on the same dataset, the accuracy of the algorithm in clustering

the WHA fracture images was never exhibited a value below 73%.

Subsequently, the dataset images that belong to the first SEM image of the sample

with tungsten composition of 90wt% are removed and the accuracy of the algorithm in
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Figure 5: Ground truth of the clustering results on the WHA fracture images dataset.

Figure 6: Clustering results with errors in predictions marked by crossed data points.
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Figure 7: Confusion matrix of the clustering results shows that the first SEM image from the sample

with 90wt% tungsten composition is the main source of clustering errors.

Figure 8: Clustering results, after removing the data points of the first SEM image of the sample with

90wt% tungsten composition, with errors in predictions marked by crossed data points.

clustering the remaining dataset images is computed. In Fig. 8 the clustering result

is presented, with the errors being crossed as before. The improvement is significant

and the confusion matrix (Fig. 9) shows a uniform distribution of errors. Finally, the
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accuracy is raised to 91%, after removing the data from this particular SEM image that

the algorithm failed to cluster correctly.

Figure 9: Confusion matrix of the clustering results, after removing the data points of the first SEM

image of the sample with 90wt% tungsten composition.

The visual differences between the two SEM images of the sample with 90wt%

tungsten composition are obvious, as it can be seen in Fig. 10, and this explains

the failure of the algorithm in grouping the data points that originated from these

two images in the same cluster. This observation initiated the inquiry of the internal

functions that enable the clustering operation of the algorithm.

The question that arises is:

– Which features of the fracture images ”attract the attention” of the neural net-

work and from these extracted features which weigh more in the final result of the

dimensionality reduction algorithms?

The answer to this question is the subject of the last part of this section, which

focuses on the visualization of the activation maps of the neural network and the inter-

pretation of the functionality of the clustering algorithm that enables its efficacy.
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(a) A102: first SEM image of the 90wt% tungsten compo-

sition sample.

(b) A103: second SEM image of the 90wt% tungsten com-

position sample.

Figure 10: The two SEM images obtained after scanning the sample with the 90wt% tungsten com-

position. Note that both images are taking under the same magnification and field of view

3.2. Fracture images classification

The WHA fracture images dataset, without including the dataset images from the

A102 SEM image (in Fig. 10a), is imported into the classification algorithm. 675

images of this dataset are assigned to training and the rest 54 are considered as the test

images. Following the computational framework for the classification of the dataset,

the algorithm is plotting the data point that correspond to the test images onto a

colormap that defines the labels for the different tungsten compositions. For the k-

Nearest Neighbors algorithm in the classification data pipeline, the number of nearest

neighbors is set to k = 15 and uniform weight distribution is used.

The result of this classification process is presented in Fig. 11a. The position that

each test data point on the colormap, which is computed by the classification data

pipeline, defines the label that is assigned to the data point. Knowing the ground truth
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(a) The result of the classification for the WHA dataset. (b) The ground truth labels of the classification result.

Figure 11: Classification results and ground truth annotations, with classification errors inside the red

circles.

annotations for the test data points allows the evaluation of the classification errors

(data points inside the red circles in Fig. 11b) and enables the computation of the

classification accuracy. The accuracy of the classification predictions is computed to

93%, while in numerous tests performed on the same dataset the lowest accuracy was

85%.

3.3. Comparison with Haralick texture descriptors method

The evaluation of the clustering and classification results shows that the two al-

gorithms presented here exhibit very high accuracy when performing on a dataset of

fracture images with very similar structural and morphological characteristics.

In order to have a reference and better understanding of the algorithm efficiency,

the WHA dataset is imported into an algorithm that extracts different texture descrip-

tors and consequently enable image classification, following the method proposed by

Haralick et al. (1973). The central component of this statistical methodology, which

is commonly used for images classification tasks where texture is of importance (e.g.

fractographs), is the Gray Level Cooccurrence Matrix (GLCM). The Haralick method
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defines 14 texture descriptors, which after being trained on a training dataset, enable

classification on the fracture images of a test dataset.

The performance of the Haralick texture descriptors algorithm on the WHA fracture

images dataset is very poor, with classification accuracy of 21%. Practically, this evalu-

ation shows that the algorithm, which is based on a well-established method commonly

used for image classification, fails to classify the fracture images of the WHA dataset

and reveals the complexity of the task at hand. Additionally, it shows the great po-

tential of the Clustering and Classification algorithms that are presented in this paper

and makes more evident the importance of their high efficiency performance.

3.4. Features visualization and Interpretability

The objective of this section is to understand the internal functions that enable

the clustering, and as an extension the classification, pipeline in performing with the

reported high efficacy on the task at hand. More specifically, the study focuses on the

visualization and consequently the interpretation of the features that the algorithm is

identifying in the input fracture images and through this information aims to gain a

better understanding on how these extracted features enable accurate predictions.

Considering the architecture of the VGG16 network, the output of the last convo-

lution layer is a set of 512 activation maps, with dimension of 7 × 7, for each input

fracture image. This set is denoted as: {Ac
k | k = 1, 2, ...M and c = 1, 2, ...N}, where

N = 810 is the total number of images in the dataset and M = 512 the number of

activation maps. When this set of activation (or else feature) maps is inserted into the

Global Average Pooling (GAP) layer, it exports a vector (~ac ∈ R512) with the mean

values of the extracted activation maps from each image. This set of feature vectors,

{~ac | c = 1, 2, ...N}, is imported into PCA. Initially, the PCA algorithm creates a data

matrix X, with dimensions N ×M , by placing the feature vectors ~ac in the rows of

the matrix, and then computes the covariance matrix S, with dimensions M ×M , as

follows:
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S = XT ·X

Finally, the computation of the eigenvalues (λk) and the eigenvectors (~uk) of the

covariance matrix are computed with the Singular Value Decomposition (SVD) method.

The eigenvalues express the total variance of the linear combinations of the feature

vectors (~ac) with the computed eigenvectors (~uk), which are called Principal Compo-

nents and their mathematical definition is:

~Pk = X · ~uk

This enables the representation of the 512-dimensional dataset of the feature vec-

tors with respect to the p = 50 principal components with the highest eigenvalues.

Furthermore, the eigenvalues express the importance of each principal component on

the reduced dimensionality representation and the eigenvectors that correspond to each

principal components express the importance of each of the 512 extracted features

by the VGG network on the specific component. Thus, selecting the first principal

component it becomes possible to weigh its influence in the reduced dimensionality

dataset, through the computation of the corresponding eigenvalue, and even assign a

weight to each feature extracted by VGG on this specific component, by computing the

512 coefficients of the corresponding eigenvector. The coefficients of the corresponding

eigenvector are the weights of the VGG extracted features.

The computation of the eigenvalues from the PCA algorithm of the clustering

pipeline on the WHA dataset shows that the first principal component expresses 41.6%

of the information in the reduced dimensionality representation of the dataset. Note

that the second and the third principal components express 16.5% and 8.7% of the

information, respectively, while the influence of the rest of the principal components is

even less significant.

Following this analysis becomes apparent that for each input fracture image c of the

WHA dataset, the weighted, by the coefficients of the eigenvector of the first principal
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component, sum of all the activation maps exported by the final convolution layer will

show the exact features of the input image that are utilized by the clustering algorithm

in the process of grouping this image with the rest of the images in the WHA fracture

images dataset. This conclusion is mathematically defined as follows:

Ac
heatmap =

512∑
k=1

|wk| ·Ac
k

where the set {Ac
k | k = 1, 2, ...512 and c = constant} is the set of the activation

maps for the specific input image and |wk| are the absolute values of the coefficients of

the eigenvector ~u that corresponds to the first principal component of the PCA:

~u =



w1

w2

·

·

·

w512


The resulted activation heatmap Ac

heatmap has dimensions of 7× 7 and when resized

to the original dimensions of the input image (448×448 pixels) enables the localization

of the features that the clustering algorithm is identifying in the specific image c of the

WHA dataset.

Implementing this computational framework in a python algorithm enables the vi-

sualization of the set of activation heatmaps: {Ac
heatmap | c = 1, 2, ...N}, computed

for each fracture image of the WHA dataset. Fig. 12 presents some representative

activation heatmaps from each group of tungsten composition, while the entire set of

activation heatmaps, which counts 810 images, together with the corresponding WHA

fracture images dataset are published in Materials Data Facility (MDF) with DOI:

https://doi.org/10.18126/aph0-olbz.
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Figure 12: Activation heatmaps for a representative sub-set of the WHA fracture dataset.
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A careful examination of the activation heatmaps concludes that the algorithm

is focusing on the ductile fracture of the alloy material, since it activates the areas

between the tungsten grains that accommodate deep and clear dimples. This ductile

behavior is attributed to the fracture of nickel-Ferrous (NiFe) matrix and it can be

hypothesized that the identification of the ductility of the fracture surface enables the

algorithm to cluster the images according to the composition of nickel in the alloy

material. Apparently, the algorithm does not focus on the tungsten’s fracture and this

very interesting observation can be justified by the fact that the fracture of tungsten

can have different manifestations (intergranular or transgranular micro-fracture modes)

in the alloy’s fracture surface, which makes the identification more complex. This

hypothesis provides a very reasonable interpretation of the internal operation of the

clustering algorithm that enables the accurate clustering and elucidates the algorithm’s

efficacy in identifying the different fracture images.

Although this analysis interprets the operation of the algorithm and the internal

processes that enable the high efficiency clustering, it does not provide an explanation

on the fact that the algorithm fails to group the two SEM fracture images from the

sample with 90wt% tungsten composition. In order to address this issue, the activation

heatmaps from the fracture images, cropped from the two original SEM images obtained

by scanning this particular sample (see Fig. 10), are used to reconstruct the activation

heatmaps that correspond to these two initial SEM images.

In Fig. 13 the activation heatmaps are shown. It is evident from these images that

the algorithm has activated fewer areas in the activation heatmap of the image A102

compared to the activated areas in the heatmap of the A103 image. Following the

previous analysis, the algorithm considers that the surface area of image A102 presents

less ductility than the surface in the image A103. It is clear that a WHA sample

produced with a specific tungsten composition - in this case 90wt% - does not provide a

fracture surface with uniform tungsten composition and it can be perfectly reasonable

that the different areas that have been scanned by the SEM contain different ratios

of tungsten and nickel, hence accommodating different amount of areas with ductile
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fracture. Thus, the activation heatmaps in Fig. 13 can provide an interpretation of the

failure of the algorithm in grouping the data from these two SEM images.

(a) Activation heatmap corresponding to A102. (b) Activation heatmap corresponding to A103.

Figure 13: Activation heatmaps that correspond to the two SEM images obtained after scanning the

sample with the 90wt% tungsten composition.

Finally, the confusion matrix in Fig. 7 shows that the data points that belong to

the images cropped from the A102 SEM image are mainly clustered together with the

data points obtained by the sample with 97wt% tungsten composition and secondarily

with the data points from the 92wt% tungsten composition sample. Fig. 14 presents

the activation heatmaps of the SEM images whose data points are grouped together by

the clustering algorithm. The similarities between the activation heatmaps of the A102

SEM image and the maps from the other two samples are significant and certainly more

pronounced than the similarities between the A102 and A103 SEM images, which are

obtained from the same sample.

Undoubtedly, a more systematic study of this clustering algorithm with different

fracture datasets is required to prove or disprove the assumptions that are made in this

interpretation of the algorithm’s internal operation analysis. This paper encourages

further investigation and the authors are convinced that a profound understanding
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(a) A102 (b) 92wt%

(c) 97wt%

Figure 14: Activation heatmaps that correspond to samples with (a) 90wt% (b) 92wt% (c) 97wt%

tungsten composition.

of the functionality of the recently introduced Machine Learning algorithms can open

up new possibilities with novel efficient characterization tools that optimize current

methods in Fracture Mechanics.
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Summary

This paper evaluates the performance of an Unsupervised Machine Learning data

pipeline in the clustering and classification of the SEM fracture images obtained from

WHA samples with different tungsten compositions. The algorithm achieves to cluster

the fracture images of this dataset according to their tungsten composition with accu-

racy that reaches to 81.2%. Additionally, the data points that are erroneously clustered

belong mainly to a certain SEM image and when they are removed from the dataset

the accuracy of the algorithm raises to 91%.

Subsequently, by adding a minimally supervised Machine Learning algorithm at

the end of the clustering pipeline and defining a new computational framework, the

classification of the fracture images according the tungsten composition of the sample

that they belong is enabled. The classification accuracy is computed to 93%, while

the Haralick texture descriptors fail to classify this fracture images dataset, since they

achieve accuracy of 21%.

Finally, in an attempt to interpret the functionality of the clustering algorithm, this

research work introduces a method that enables the visualization of the features in the

input fracture images that are activated by the algorithm and enable the identification

and clustering of the images according to the tungsten composition. More specifically,

a set of activation heatmaps - one for each input fracture image - is computed to enable

the visualization of the exact locations in each input fracture image that are activated

by the algorithm and consequently are used to enable the accurate clustering of the

dataset. The interpretation of these activation heatmaps shows that the algorithm is

using the ductile micro-fracture modes (dimples), which are the product of the ductile

fracture of the Nickel-Ferrous matrix, in order to group the WHA dataset according

to the tungsten composition. This estimation of ductility of the fracture surfaces is

correlated to both the percentage of the NiFe presence in the alloy as well as to the

relative amount of matrix failure exhibited by the specimen and this creates a criterion

for the clustering process. One can speculate, that since different loading scenarios
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(eg. loading rate, triaxiality etc.) will result in different crack paths and will affect the

relative amount of ductile vs brittle fracture indicators in the surface, a similar pipeline

could be used to classify specimens following the conditions at which they failed. This

hypothesis will be tested in a future work.

Data availability

The dataset used for this study and the corresponding Activation Maps are pub-

lished in Materials Data Facility (MDF) with DOI: https://doi.org/10.18126/aph0-olbz.

The source code is available at https://github.com/SteliosTsop/WHA_Clustering_

Classification_Visualization.
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