Main content

Contributors:
  1. Jill Schmidt

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: In the field of biomechanics, optical motion tracking systems are commonly used to record human motion and assist in surgical navigation. Recently, motion tracking systems have been used to track implant and bone motion on a micron-level. The present study evaluated four different Optotrak® motion tracking systems to determine the precision, repeatability and accuracy under static testing conditions. The distance between the camera systems and the rigid body, as well as the tilt angle of the rigid body, did affect the resulting precision, repeatability and accuracy of the camera systems. The precision and repeatability, calculated as the within-trial and between-trial standard deviations, respectively, were less than 30 µm; with some configurations producing precision and repeatability less than 1 µm. The accuracy was less than 0.53% of the total displacement for the in-plane motion and less than 1.56% of the total displacement for the out-of-plane motion.

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.