Preprint / Version 1

Linear Regularization-based Analysis and Prediction of Human Mobility in the U.S. during the COVID-19 Pandemic

##article.authors##

DOI:

https://doi.org/10.31224/osf.io/szvtc

Keywords:

COVID-19, Linear Regression, Regularization, Transportation

Abstract

Since the increasing spread of COVID-19 in the U.S., with currently the highest number of confirmed cases and deaths in the world, most states in the nation have enforced travel restrictions resulting in drastic reductions in mobility and travel. However, the overall impact and long-term implications of this crisis to mobility still remain uncertain. To this end, this study develops an analytical framework that determines the most significant factors impacting human mobility and travel in the U.S. during the pandemic. In particular, we use Least Absolute Shrinkage and Selection Operator (LASSO) to identify the significant variables influencing human mobility and utilize linear regularization algorithms, including Ridge, LASSO, and Elastic Net modeling techniques to model and predict human mobility and travel. State-level data were obtained from various open-access sources for the period from January 1, 2020 to June 13, 2020. The entire data set was divided into a training data-set and a test data-set and the variables selected by LASSO were used to train four different models by ordinary linear regression, Ridge regression, LASSO and Elastic Net regression algorithms, using the training data-set. Finally, the prediction accuracy of the developed models was examined on the test data. The results indicate that among all models, the Ridge regression provides the most superior performance with the least error, while both LASSO and Elastic Net performed better than the ordinary linear model.

Downloads

Download data is not yet available.

Downloads

Posted

2020-08-20