This is an outdated version published on 2021-03-31. Read the most recent version.
Preprint / Version 1

A comparative review of peridynamics and phase-field models for engineering fracture mechanics

##article.authors##

DOI:

https://doi.org/10.31224/osf.io/gty2b

Keywords:

engineering fracture mechanics, peridynamic, phase-field

Abstract

Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, The Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities with their relative advantages and challenges are summarized.

Downloads

Download data is not yet available.

Downloads

Posted

2021-03-31

Versions