Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method
Part I: Corrosion
DOI:
https://doi.org/10.31224/2477Keywords:
Corrosion, finite element method, level-set method, moving boundary problem, validation, uncertainty quantificationAbstract
Corrosion is a phenomenon observed in structural components in corrosive environments such as pipelines, bridges, aircrafts, turbines, etc. The computational model of corrosion should enjoy two features: a) accurately considering the electrochemistry of corrosion and b) properly dealing with the moving interface between solid and electrolyte. There are several approaches to model corrosion such as using FEM with mesh refinement algorithms, combining FEM and level-set method, employing finite volume methods, adopting peridynamic formulation, and utilizing phase field models. Because of its accuracy, lower computational cost, and robust dealing with multiple pit merging, the model which combines FEM with level-set method is selected to be more extensively assessed in this paper. Part I focuses on demonstrating the model’s capabilities of simulating pitting corrosion through a set of numerical examples which include numerical solution verification, experimental validation, and uncertainty quantification of model parameters and properties.
Downloads
Downloads
Posted
License
Copyright (c) 2022 Amir Fayezioghani, Richard Dekker, Bert Sluys

This work is licensed under a Creative Commons Attribution 4.0 International License.