Preprint has been published in a journal as an article
DOI of the published article
Preprint / Version 2

Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges




balance assist, aging, assistive technology, balance control, bicycle, cycling safety


Bicycles are more difficult to control at low speeds due to the vehicle’s unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking.
To address this issue, we developed a second prototype 'balance assist system' with Royal Dutch Gazelle and Bosch eBike Systems at Delft University of Technology, which includes an electric motor capable of providing additional steering torque to that of the rider. We conducted a study with 18 older and 14 younger cyclists to first examine the effect of aging, disturbances, and multi-tasking on cycling at lower forward speeds, and evaluate the effectiveness of the system in improving the self-stability of the rider-bicycle system while facing these challenges.

The study consisted of two scenarios: a single-task scenario where participants rode the bicycle on a marked narrow straight-line track, and a multi-task scenario where participants performed a shoulder check task and followed visual cues while tracking the straight-line. We introduced handlebar disturbances using the steer motor also in half of the trials in both scenarios. All trials were repeated with and without the balance assist system. We calculated the bicycle mean magnitude of roll and steering rate – as indicators of bicycle balance control and steering effort, respectively – and the rider’s mean magnitude of lean rate with respect to the ground to investigate the effect of the balance assist system on rider's lateral motion.

Our results showed that aging, disturbances, and multi-tasking increased the roll rate, but the balance assist system was able to significantly reduce it. The effect of the balance assist system in reducing the roll rate in all conditions was more significant in older cyclists. Disturbances and multi-tasking increased the steering rate, which was successfully reduced by the balance assist system. Aging did not significantly affect the steering rate. The rider's lean rate was not significantly affected by age, disturbances, or the balance assist, indicating that the upper body plays a minor role when riders have good steering control authority.

Overall, our findings suggest that lateral motion and steering effort can be affected by age, multi-tasking (distractions), and handlebar disturbances which can endanger cyclists' safety, and the balance assist system has the potential to improve cycling safety and reduce the incidence of single-actor crashes. Further investigation on riders’ contribution to control actions is required.


Download data is not yet available.



2023-02-13 — Updated on 2023-05-26