This is an outdated version published on 2019-06-29. Read the most recent version.
Preprint has been published in a journal as an article
DOI of the published article https://doi.org/10.1109/TMRB.2021.3098921
Preprint
/
Version 3
DOI of the published article https://doi.org/10.1109/TMRB.2021.3098921
Design and Preliminary Results of a Reaction Force Series Elastic Actuator for Bionic Knee and Ankle Prostheses
DOI:
https://doi.org/10.31224/osf.io/3wt5jKeywords:
actuator, ankle, biomechanics, mechatronics, powered, prostheses, prosthetic, roboticsAbstract
We present an actuator designed for untethered, lower-extremity powered-prostheses that replicates biological kinetic and kinematic function of both human knees and ankles. An electric energy optimal hardware specification is defined by kinematically clamping walking gait data to the dynamic model of a series elastic actuator (SEA) and searching for motor, reduction ratio, and spring. The actuator is shown to achieve the required torque, angle, and velocity requirements for nominal walking conditions on level ground as well as varied terrain. The performance of the actuator is demonstrated on benchtop and as worn by a human subject with unilateral below knee amputation. The resulting design is a moment-coupled cantilever-beam reaction-force SEA (MC-RFSEA) that has a nominal torque rating of 85Nm, repeated peak torque of 175Nm, 105 degree range of motion, and a hardware mass of 1.6kg. Preliminary results from level-ground walking with the actuator tested in an ankle configuration show an electric cost of transport of 0.053J/kg when walking at 1.5m/s.Downloads
Download data is not yet available.
Downloads
Posted
2019-06-29 — Updated on 2019-06-29